Properties

Label 2.37.i_cc
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 37 x^{2} )( 1 + 10 x + 37 x^{2} )$
  $1 + 8 x + 54 x^{2} + 296 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.447431543289$, $\pm0.807138866923$
Angle rank:  $2$ (numerical)
Jacobians:  $186$
Cyclic group of points:    no
Non-cyclic primes:   $2, 3$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1728$ $1935360$ $2571072192$ $3512291328000$ $4806588162472128$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $46$ $1414$ $50758$ $1874062$ $69315166$ $2565871126$ $94932161398$ $3512478024478$ $129961732460686$ $4808584226024614$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 186 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The isogeny class factors as 1.37.ac $\times$ 1.37.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.am_dq$2$(not in LMFDB)
2.37.ai_cc$2$(not in LMFDB)
2.37.m_dq$2$(not in LMFDB)
2.37.an_ds$3$(not in LMFDB)
2.37.ab_cu$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.am_dq$2$(not in LMFDB)
2.37.ai_cc$2$(not in LMFDB)
2.37.m_dq$2$(not in LMFDB)
2.37.an_ds$3$(not in LMFDB)
2.37.ab_cu$3$(not in LMFDB)
2.37.aw_hm$4$(not in LMFDB)
2.37.ac_abu$4$(not in LMFDB)
2.37.c_abu$4$(not in LMFDB)
2.37.w_hm$4$(not in LMFDB)
2.37.aj_ca$6$(not in LMFDB)
2.37.ad_cy$6$(not in LMFDB)
2.37.b_cu$6$(not in LMFDB)
2.37.d_cy$6$(not in LMFDB)
2.37.j_ca$6$(not in LMFDB)
2.37.n_ds$6$(not in LMFDB)
2.37.ax_hy$12$(not in LMFDB)
2.37.an_di$12$(not in LMFDB)
2.37.al_ck$12$(not in LMFDB)
2.37.ab_acg$12$(not in LMFDB)
2.37.b_acg$12$(not in LMFDB)
2.37.l_ck$12$(not in LMFDB)
2.37.n_di$12$(not in LMFDB)
2.37.x_hy$12$(not in LMFDB)