Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 37 x^{2} )( 1 + 10 x + 37 x^{2} )$ |
| $1 + 8 x + 54 x^{2} + 296 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.447431543289$, $\pm0.807138866923$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $186$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1728$ | $1935360$ | $2571072192$ | $3512291328000$ | $4806588162472128$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $46$ | $1414$ | $50758$ | $1874062$ | $69315166$ | $2565871126$ | $94932161398$ | $3512478024478$ | $129961732460686$ | $4808584226024614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 186 curves (of which all are hyperelliptic):
- $y^2=36 x^6+34 x^5+34 x^4+20 x^3+x^2+13 x$
- $y^2=16 x^6+32 x^5+20 x^4+14 x^3+26 x^2+x+30$
- $y^2=31 x^6+35 x^5+30 x^4+29 x^3+30 x^2+35 x+31$
- $y^2=20 x^6+16 x^5+23 x^4+6 x^3+23 x^2+16 x+20$
- $y^2=4 x^6+33 x^5+26 x^4+27 x^3+26 x+16$
- $y^2=12 x^6+29 x^5+5 x^4+24 x^3+17 x^2+17 x+21$
- $y^2=8 x^6+15 x^5+27 x^4+x^3+27 x^2+15 x+8$
- $y^2=20 x^6+2 x^5+25 x^4+12 x^3+33 x^2+23 x+32$
- $y^2=29 x^6+8 x^5+21 x^4+16 x^3+9 x^2+15 x+3$
- $y^2=29 x^5+8 x^4+x^3+8 x^2+29 x$
- $y^2=26 x^6+33 x^4+11 x^3+2 x^2+5 x$
- $y^2=10 x^6+33 x^5+x^4+x^3+8 x^2+23 x+31$
- $y^2=13 x^5+12 x^4+34 x^3+5 x^2+27 x+12$
- $y^2=9 x^6+21 x^5+21 x^4+22 x^2+26 x+16$
- $y^2=19 x^6+29 x^5+14 x^4+5 x^3+15 x^2+2 x+19$
- $y^2=30 x^6+21 x^5+25 x^4+7 x^3+35 x^2+21 x+25$
- $y^2=32 x^6+15 x^5+31 x^4+23 x^3+33 x^2+14 x+28$
- $y^2=9 x^6+12 x^5+26 x^4+31 x^3+12 x^2+9 x+6$
- $y^2=25 x^6+18 x^5+6 x^4+23 x^3+16 x^2+17 x+1$
- $y^2=30 x^6+15 x^5+9 x^4+26 x^3+4 x^2+9 x+16$
- and 166 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ac $\times$ 1.37.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.