Properties

Label 2.7.c_o
Base field $\F_{7}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
L-polynomial:  $( 1 + 7 x^{2} )( 1 + 2 x + 7 x^{2} )$
  $1 + 2 x + 14 x^{2} + 14 x^{3} + 49 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.623375857214$
Angle rank:  $1$ (numerical)
Jacobians:  $4$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $80$ $3840$ $106640$ $5529600$ $286576400$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $10$ $74$ $310$ $2302$ $17050$ $117866$ $822790$ $5764798$ $40349290$ $282483914$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7^{2}}$.

Endomorphism algebra over $\F_{7}$
The isogeny class factors as 1.7.a $\times$ 1.7.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{7}$
The base change of $A$ to $\F_{7^{2}}$ is 1.49.k $\times$ 1.49.o. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.7.ac_o$2$2.49.y_je