Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x^{2} + 961 x^{4}$ |
Frobenius angles: | $\pm0.197724823975$, $\pm0.802275176025$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-42}, \sqrt{82})\) |
Galois group: | $C_2^2$ |
Jacobians: | $36$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $942$ | $887364$ | $887553342$ | $855706401936$ | $819628229868702$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $32$ | $922$ | $29792$ | $926566$ | $28629152$ | $887603002$ | $27512614112$ | $852890098558$ | $26439622160672$ | $819628172756602$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=18 x^6+29 x^5+9 x^4+3 x^3+24 x^2+17 x+18$
- $y^2=23 x^6+25 x^5+27 x^4+9 x^3+10 x^2+20 x+23$
- $y^2=2 x^6+17 x^5+2 x^4+8 x^3+7 x^2+3 x+15$
- $y^2=6 x^6+20 x^5+6 x^4+24 x^3+21 x^2+9 x+14$
- $y^2=30 x^6+22 x^5+25 x^4+26 x^3+4 x^2+24 x+13$
- $y^2=28 x^6+4 x^5+13 x^4+16 x^3+12 x^2+10 x+8$
- $y^2=17 x^6+13 x^5+8 x^4+28 x^3+28 x^2+13 x+17$
- $y^2=20 x^6+8 x^5+24 x^4+22 x^3+22 x^2+8 x+20$
- $y^2=20 x^6+12 x^5+6 x^4+25 x^3+11 x^2+5 x+1$
- $y^2=29 x^6+5 x^5+18 x^4+13 x^3+2 x^2+15 x+3$
- $y^2=3 x^6+14 x^5+21 x^4+29 x^3+21 x^2+11 x+21$
- $y^2=9 x^6+11 x^5+x^4+25 x^3+x^2+2 x+1$
- $y^2=14 x^6+16 x^5+27 x^4+18 x^3+14 x^2+21 x+10$
- $y^2=11 x^6+17 x^5+19 x^4+23 x^3+11 x^2+x+30$
- $y^2=21 x^6+15 x^5+14 x^4+27 x^3+7 x^2+4 x+18$
- $y^2=x^6+14 x^5+11 x^4+19 x^3+21 x^2+12 x+23$
- $y^2=2 x^6+12 x^5+23 x^4+27 x^3+4 x^2+2 x+28$
- $y^2=6 x^6+5 x^5+7 x^4+19 x^3+12 x^2+6 x+22$
- $y^2=x^6+23 x^5+24 x^4+9 x^3+2 x^2+11 x+13$
- $y^2=3 x^6+7 x^5+10 x^4+27 x^3+6 x^2+2 x+8$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-42}, \sqrt{82})\). |
The base change of $A$ to $\F_{31^{2}}$ is 1.961.au 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-861}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.a_u | $4$ | (not in LMFDB) |