-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 942, 'abvar_counts': [942, 887364, 887553342, 855706401936, 819628229868702, 787750934895368964, 756943935261858883662, 727422320983362624000000, 699053619999035285541470862, 671790435197701805332159164804], 'abvar_counts_str': '942 887364 887553342 855706401936 819628229868702 787750934895368964 756943935261858883662 727422320983362624000000 699053619999035285541470862 671790435197701805332159164804 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.197724823975034, 0.802275176024967], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 32, 'curve_counts': [32, 922, 29792, 926566, 28629152, 887603002, 27512614112, 852890098558, 26439622160672, 819628172756602], 'curve_counts_str': '32 922 29792 926566 28629152 887603002 27512614112 852890098558 26439622160672 819628172756602 ', 'curves': ['y^2=18*x^6+29*x^5+9*x^4+3*x^3+24*x^2+17*x+18', 'y^2=23*x^6+25*x^5+27*x^4+9*x^3+10*x^2+20*x+23', 'y^2=2*x^6+17*x^5+2*x^4+8*x^3+7*x^2+3*x+15', 'y^2=6*x^6+20*x^5+6*x^4+24*x^3+21*x^2+9*x+14', 'y^2=30*x^6+22*x^5+25*x^4+26*x^3+4*x^2+24*x+13', 'y^2=28*x^6+4*x^5+13*x^4+16*x^3+12*x^2+10*x+8', 'y^2=17*x^6+13*x^5+8*x^4+28*x^3+28*x^2+13*x+17', 'y^2=20*x^6+8*x^5+24*x^4+22*x^3+22*x^2+8*x+20', 'y^2=20*x^6+12*x^5+6*x^4+25*x^3+11*x^2+5*x+1', 'y^2=29*x^6+5*x^5+18*x^4+13*x^3+2*x^2+15*x+3', 'y^2=3*x^6+14*x^5+21*x^4+29*x^3+21*x^2+11*x+21', 'y^2=9*x^6+11*x^5+x^4+25*x^3+x^2+2*x+1', 'y^2=14*x^6+16*x^5+27*x^4+18*x^3+14*x^2+21*x+10', 'y^2=11*x^6+17*x^5+19*x^4+23*x^3+11*x^2+x+30', 'y^2=21*x^6+15*x^5+14*x^4+27*x^3+7*x^2+4*x+18', 'y^2=x^6+14*x^5+11*x^4+19*x^3+21*x^2+12*x+23', 'y^2=2*x^6+12*x^5+23*x^4+27*x^3+4*x^2+2*x+28', 'y^2=6*x^6+5*x^5+7*x^4+19*x^3+12*x^2+6*x+22', 'y^2=x^6+23*x^5+24*x^4+9*x^3+2*x^2+11*x+13', 'y^2=3*x^6+7*x^5+10*x^4+27*x^3+6*x^2+2*x+8', 'y^2=25*x^6+9*x^5+2*x^4+24*x^3+27*x^2+4*x+24', 'y^2=13*x^6+27*x^5+6*x^4+10*x^3+19*x^2+12*x+10', 'y^2=3*x^6+13*x^5+9*x^4+14*x^3+10*x^2+2*x+16', 'y^2=9*x^6+8*x^5+27*x^4+11*x^3+30*x^2+6*x+17', 'y^2=x^6+14*x^5+19*x^4+7*x^3+28*x^2+15*x', 'y^2=3*x^6+11*x^5+26*x^4+21*x^3+22*x^2+14*x', 'y^2=18*x^6+16*x^5+26*x^4+8*x^3+9*x^2+25*x+26', 'y^2=23*x^6+17*x^5+16*x^4+24*x^3+27*x^2+13*x+16', 'y^2=7*x^6+3*x^5+22*x^4+5*x^3+13*x^2+12*x+16', 'y^2=21*x^6+9*x^5+4*x^4+15*x^3+8*x^2+5*x+17', 'y^2=13*x^6+6*x^5+14*x^4+23*x^3+18*x^2+12*x+20', 'y^2=8*x^6+18*x^5+11*x^4+7*x^3+23*x^2+5*x+29', 'y^2=27*x^6+20*x^5+13*x^4+11*x^3+19*x^2+12*x+16', 'y^2=19*x^6+29*x^5+8*x^4+2*x^3+26*x^2+5*x+17', 'y^2=15*x^6+27*x^5+12*x^4+27*x^3+14*x^2+24*x+21', 'y^2=14*x^6+19*x^5+5*x^4+19*x^3+11*x^2+10*x+1'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.3444.1'], 'geometric_splitting_field': '2.0.3444.1', 'geometric_splitting_polynomials': [[861, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 36, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 36, 'label': '2.31.a_au', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 4, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.189778176.2'], 'p': 31, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, -20, 0, 961], 'poly_str': '1 0 -20 0 961 ', 'primitive_models': [], 'q': 31, 'real_poly': [1, 0, -82], 'simple_distinct': ['2.31.a_au'], 'simple_factors': ['2.31.a_auA'], 'simple_multiplicities': [1], 'singular_primes': [], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.189778176.2', 'splitting_polynomials': [[961, 0, -20, 0, 1]], 'twist_count': 2, 'twists': [['2.31.a_u', '2.923521.enc_jcxbq', 4]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 1764, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 20608
{'base_label': '2.31.a_au', 'extension_degree': 1, 'extension_label': '2.31.a_au', 'multiplicity': 1}
-
id: 20609
{'base_label': '2.31.a_au', 'extension_degree': 2, 'extension_label': '1.961.au', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.189778176.2', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.31.a_au', 'galois_group': '4T2', 'places': [['12', '1', '0', '0'], ['19', '1', '0', '0'], ['12', '941/31', '0', '1/31'], ['19', '941/31', '0', '1/31']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.3444.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.961.au', 'galois_group': '2T1', 'places': [['21', '1'], ['10', '1']]}