Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 67 x^{2} )( 1 - 10 x + 67 x^{2} )$ |
$1 - 22 x + 254 x^{2} - 1474 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.238111713333$, $\pm0.290828956352$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $24$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3248$ | $20267520$ | $90969168752$ | $406404311040000$ | $1822934015107426928$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $46$ | $4514$ | $302458$ | $20167822$ | $1350196366$ | $90458097266$ | $6060704249338$ | $406067618158558$ | $27206534218131886$ | $1822837806155498114$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=14 x^6+5 x^5+12 x^4+61 x^3+12 x^2+5 x+14$
- $y^2=44 x^6+63 x^5+48 x^4+59 x^3+8 x^2+52 x+61$
- $y^2=55 x^6+39 x^5+50 x^4+40 x^3+61 x^2+19 x+4$
- $y^2=5 x^6+48 x^5+59 x^4+62 x^3+35 x^2+31 x+52$
- $y^2=41 x^6+40 x^5+60 x^4+6 x^3+64 x^2+47 x+63$
- $y^2=44 x^6+24 x^4+10 x^3+24 x^2+44$
- $y^2=24 x^6+24 x^5+8 x^4+49 x^3+44 x^2+56 x+40$
- $y^2=59 x^6+15 x^5+15 x^4+14 x^3+22 x^2+x+15$
- $y^2=3 x^6+3 x^5+57 x^4+29 x^3+57 x^2+3 x+3$
- $y^2=41 x^6+17 x^5+65 x^4+66 x^3+65 x^2+17 x+41$
- $y^2=27 x^6+54 x^5+54 x^4+30 x^3+54 x^2+54 x+27$
- $y^2=17 x^6+54 x^5+9 x^4+47 x^3+9 x^2+54 x+17$
- $y^2=2 x^6+50 x^5+61 x^4+33 x^3+61 x^2+50 x+2$
- $y^2=64 x^6+32 x^5+62 x^4+13 x^3+62 x^2+32 x+64$
- $y^2=3 x^6+20 x^5+15 x^4+45 x^3+36 x^2+8 x+27$
- $y^2=46 x^6+55 x^5+2 x^4+45 x^3+53 x^2+15 x+34$
- $y^2=61 x^6+48 x^5+35 x^4+27 x^3+35 x^2+48 x+61$
- $y^2=32 x^6+47 x^5+10 x^4+46 x^3+10 x^2+47 x+32$
- $y^2=34 x^6+46 x^5+50 x^4+14 x^3+46 x^2+28 x+11$
- $y^2=20 x^6+23 x^5+14 x^4+41 x^3+14 x^2+23 x+20$
- $y^2=5 x^6+11 x^5+63 x^4+59 x^3+5 x^2+13 x+52$
- $y^2=31 x^6+16 x^5+27 x^4+33 x^3+27 x^2+16 x+31$
- $y^2=43 x^6+32 x^5+10 x^4+6 x^3+10 x^2+32 x+43$
- $y^2=19 x^6+26 x^5+51 x^4+38 x^3+51 x^2+26 x+19$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.am $\times$ 1.67.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ac_o | $2$ | (not in LMFDB) |
2.67.c_o | $2$ | (not in LMFDB) |
2.67.w_ju | $2$ | (not in LMFDB) |