L(s) = 1 | + 4-s + 2·5-s + 4·7-s + 16-s + 4·17-s + 2·20-s + 3·25-s + 4·28-s + 8·35-s − 4·37-s + 4·41-s − 8·47-s + 9·49-s + 64-s + 16·67-s + 4·68-s + 8·79-s + 2·80-s − 16·83-s + 8·85-s − 12·89-s + 3·100-s + 4·101-s − 4·109-s + 4·112-s + 16·119-s + 10·121-s + ⋯ |
L(s) = 1 | + 1/2·4-s + 0.894·5-s + 1.51·7-s + 1/4·16-s + 0.970·17-s + 0.447·20-s + 3/5·25-s + 0.755·28-s + 1.35·35-s − 0.657·37-s + 0.624·41-s − 1.16·47-s + 9/7·49-s + 1/8·64-s + 1.95·67-s + 0.485·68-s + 0.900·79-s + 0.223·80-s − 1.75·83-s + 0.867·85-s − 1.27·89-s + 3/10·100-s + 0.398·101-s − 0.383·109-s + 0.377·112-s + 1.46·119-s + 0.909·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.319674640\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.319674640\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.557062975195138528339974855083, −8.207114208582584696728360323356, −7.73718983337907671886956340301, −7.37026739180275891403332622063, −6.75439842094278852773351280866, −6.36881766379346555400116849040, −5.71892785760104327118877728605, −5.32566682982525059627463950650, −5.02383395829724229852490627586, −4.34739903650599522470128861177, −3.70577795729173186507963442792, −2.97749107347859756807500302237, −2.31735159116341016090358415673, −1.70835897226906595791475184002, −1.13607679413910264694535329196,
1.13607679413910264694535329196, 1.70835897226906595791475184002, 2.31735159116341016090358415673, 2.97749107347859756807500302237, 3.70577795729173186507963442792, 4.34739903650599522470128861177, 5.02383395829724229852490627586, 5.32566682982525059627463950650, 5.71892785760104327118877728605, 6.36881766379346555400116849040, 6.75439842094278852773351280866, 7.37026739180275891403332622063, 7.73718983337907671886956340301, 8.207114208582584696728360323356, 8.557062975195138528339974855083