L(s) = 1 | + 2-s − 3-s + 4-s − 6-s − 4·7-s + 8-s + 9-s − 12-s − 4·14-s + 16-s + 18-s + 2·19-s + 4·21-s − 24-s − 2·25-s − 27-s − 4·28-s − 6·29-s + 32-s + 36-s + 2·38-s + 14·41-s + 4·42-s + 4·43-s − 48-s − 2·49-s − 2·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s − 1.06·14-s + 1/4·16-s + 0.235·18-s + 0.458·19-s + 0.872·21-s − 0.204·24-s − 2/5·25-s − 0.192·27-s − 0.755·28-s − 1.11·29-s + 0.176·32-s + 1/6·36-s + 0.324·38-s + 2.18·41-s + 0.617·42-s + 0.609·43-s − 0.144·48-s − 2/7·49-s − 0.282·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.642747061\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.642747061\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.145654901649601007440149498138, −7.79056387962926297798460496712, −7.47902692369469057041049508614, −6.74374945235889261602605085933, −6.53038867670044216467089513665, −6.13964380830864792272980375283, −5.63825240005367975557499299467, −5.26976181474469883458533862098, −4.62714010241034487789076615495, −4.09285294902583373683876654205, −3.56349389416153626283741913007, −3.14557192722245558817228296431, −2.48816393146487462114219431112, −1.71152780217248140295681386003, −0.58869815759023896820868809890,
0.58869815759023896820868809890, 1.71152780217248140295681386003, 2.48816393146487462114219431112, 3.14557192722245558817228296431, 3.56349389416153626283741913007, 4.09285294902583373683876654205, 4.62714010241034487789076615495, 5.26976181474469883458533862098, 5.63825240005367975557499299467, 6.13964380830864792272980375283, 6.53038867670044216467089513665, 6.74374945235889261602605085933, 7.47902692369469057041049508614, 7.79056387962926297798460496712, 8.145654901649601007440149498138