Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 43 x^{2} )( 1 + 43 x^{2} )$ |
$1 - 4 x + 86 x^{2} - 172 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.401344489543$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $72$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1760$ | $3717120$ | $6357459680$ | $11671459430400$ | $21607918534584800$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $2006$ | $79960$ | $3413902$ | $146984200$ | $6321476774$ | $271819472440$ | $11688198832798$ | $502592596470760$ | $21611482313546486$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=30 x^6+22 x^5+11 x^4+37 x^3+16 x^2+27 x+7$
- $y^2=33 x^6+28 x^5+42 x^4+18 x^3+42 x^2+28 x+33$
- $y^2=x^6+36 x^5+11 x^4+15 x^3+30 x+32$
- $y^2=39 x^6+19 x^5+14 x^4+40 x^3+22 x^2+41 x+2$
- $y^2=31 x^6+30 x^5+30 x^4+9 x^3+35 x^2+6 x+17$
- $y^2=22 x^6+16 x^5+42 x^4+36 x^3+29 x^2+29 x+42$
- $y^2=18 x^5+22 x^4+35 x^3+30 x^2+42 x$
- $y^2=14 x^6+27 x^5+30 x^4+27 x^3+30 x^2+27 x+14$
- $y^2=14 x^6+2 x^5+42 x^4+4 x^3+30 x^2+37 x+13$
- $y^2=21 x^6+38 x^5+42 x^4+39 x^3+42 x^2+38 x+21$
- $y^2=11 x^6+42 x^5+34 x^4+8 x^3+26 x^2+32 x+4$
- $y^2=6 x^6+32 x^5+12 x^4+14 x^3+12 x^2+32 x+6$
- $y^2=18 x^6+8 x^5+28 x^4+20 x^3+3 x^2+25 x+19$
- $y^2=20 x^6+37 x^5+21 x^4+42 x^3+24 x^2+22 x+37$
- $y^2=36 x^6+21 x^5+3 x^4+11 x^3+3 x^2+21 x+36$
- $y^2=14 x^6+27 x^5+27 x^4+x^3+3 x^2+29 x+36$
- $y^2=10 x^6+16 x^5+14 x^4+30 x^3+14 x^2+16 x+10$
- $y^2=11 x^6+x^5+29 x^4+38 x^3+12 x^2+6 x+11$
- $y^2=22 x^6+10 x^5+23 x^4+26 x^3+23 x^2+10 x+22$
- $y^2=40 x^6+31 x^5+30 x^4+12 x^3+29 x^2+10 x+6$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ae $\times$ 1.43.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.cs $\times$ 1.1849.di. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.e_di | $2$ | (not in LMFDB) |