L(s) = 1 | − 4·3-s + 2·5-s + 4·7-s + 8·9-s − 8·11-s − 8·15-s − 2·17-s − 16·21-s + 4·23-s + 3·25-s − 12·27-s + 4·29-s + 32·33-s + 8·35-s + 4·37-s + 4·41-s + 4·43-s + 16·45-s + 4·47-s + 8·51-s − 12·53-s − 16·55-s − 24·59-s − 4·61-s + 32·63-s − 12·67-s − 16·69-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 0.894·5-s + 1.51·7-s + 8/3·9-s − 2.41·11-s − 2.06·15-s − 0.485·17-s − 3.49·21-s + 0.834·23-s + 3/5·25-s − 2.30·27-s + 0.742·29-s + 5.57·33-s + 1.35·35-s + 0.657·37-s + 0.624·41-s + 0.609·43-s + 2.38·45-s + 0.583·47-s + 1.12·51-s − 1.64·53-s − 2.15·55-s − 3.12·59-s − 0.512·61-s + 4.03·63-s − 1.46·67-s − 1.92·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.903572996808499233526008689882, −7.52302911297560750684352264914, −7.29095278690640120189683231487, −6.91218574126440561547091401266, −6.17409497391199646221971748727, −6.13446226872738893336959817558, −5.76616025170242994538531998760, −5.60166099673930416174245469860, −4.92960934004069159478998374398, −4.90522896341215232567281129429, −4.55366942509113944682210834767, −4.50345307445020084407369677475, −3.42826872851663667752452248076, −2.87517576236151676139880390216, −2.53923013459639099598653057876, −2.01791843607347906683070829071, −1.34928197971440321054106538568, −1.13690018436444611787123090264, 0, 0,
1.13690018436444611787123090264, 1.34928197971440321054106538568, 2.01791843607347906683070829071, 2.53923013459639099598653057876, 2.87517576236151676139880390216, 3.42826872851663667752452248076, 4.50345307445020084407369677475, 4.55366942509113944682210834767, 4.90522896341215232567281129429, 4.92960934004069159478998374398, 5.60166099673930416174245469860, 5.76616025170242994538531998760, 6.13446226872738893336959817558, 6.17409497391199646221971748727, 6.91218574126440561547091401266, 7.29095278690640120189683231487, 7.52302911297560750684352264914, 7.903572996808499233526008689882