Properties

Label 2.37.ae_g
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 6 x^{2} - 148 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.169284035447$, $\pm0.678968104224$
Angle rank:  $2$ (numerical)
Number field:  4.0.64512.5
Galois group:  $D_{4}$
Jacobians:  $112$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1224$ $1870272$ $2543737608$ $3518415535104$ $4809982287630024$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $34$ $1366$ $50218$ $1877326$ $69364114$ $2565728998$ $94932831706$ $3512481908254$ $129961716674434$ $4808584402942966$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The endomorphism algebra of this simple isogeny class is 4.0.64512.5.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.e_g$2$(not in LMFDB)