Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 6 x^{2} - 148 x^{3} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.169284035447$, $\pm0.678968104224$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.64512.5 |
Galois group: | $D_{4}$ |
Jacobians: | $112$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1224$ | $1870272$ | $2543737608$ | $3518415535104$ | $4809982287630024$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $34$ | $1366$ | $50218$ | $1877326$ | $69364114$ | $2565728998$ | $94932831706$ | $3512481908254$ | $129961716674434$ | $4808584402942966$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=35 x^6+20 x^5+31 x^4+12 x^3+12 x^2+4 x+36$
- $y^2=12 x^6+6 x^5+26 x^4+5 x^3+6 x+31$
- $y^2=31 x^6+32 x^5+36 x^4+4 x^3+28 x^2+x+8$
- $y^2=33 x^6+10 x^5+7 x^4+15 x^3+28 x^2+19 x+30$
- $y^2=30 x^6+16 x^5+17 x^4+31 x^3+22 x+17$
- $y^2=27 x^6+10 x^5+31 x^4+28 x^3+7 x^2+8 x+19$
- $y^2=3 x^6+14 x^5+19 x^4+23 x^3+10 x^2+16 x+31$
- $y^2=23 x^6+34 x^5+6 x^4+36 x^3+25 x^2+2 x+27$
- $y^2=5 x^6+4 x^5+35 x^3+29 x^2+33 x+13$
- $y^2=35 x^6+7 x^5+11 x^4+17 x^3+18 x^2+26 x+1$
- $y^2=19 x^6+11 x^5+9 x^4+23 x^3+33 x^2+32 x+34$
- $y^2=19 x^6+33 x^5+30 x^4+26 x^3+23 x^2+30 x+2$
- $y^2=32 x^6+31 x^5+23 x^4+33 x^3+7 x^2+11 x+34$
- $y^2=36 x^6+10 x^5+29 x^4+33 x^3+33 x^2+25 x+10$
- $y^2=20 x^6+3 x^5+29 x^4+26 x^3+6 x^2+33 x+15$
- $y^2=23 x^6+17 x^5+35 x^4+8 x^3+5 x^2+17 x+14$
- $y^2=7 x^6+x^5+34 x^4+23 x^2+30 x+19$
- $y^2=9 x^6+14 x^5+28 x^4+16 x^3+2 x^2+12 x+1$
- $y^2=5 x^6+22 x^5+8 x^4+32 x^3+5 x^2+35 x+1$
- $y^2=12 x^6+5 x^5+6 x^4+14 x^3+9 x^2+31 x+21$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is 4.0.64512.5. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.e_g | $2$ | (not in LMFDB) |