Properties

Label 2.59.y_ju
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 + 24 x + 254 x^{2} + 1416 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.703648130929$, $\pm0.915837546662$
Angle rank:  $2$ (numerical)
Number field:  4.0.39168.3
Galois group:  $D_{4}$
Jacobians:  $28$
Isomorphism classes:  44

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5176$ $11884096$ $42136040632$ $146859475166208$ $511123978285290616$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $84$ $3414$ $205164$ $12119758$ $714934404$ $42180225126$ $2488653681948$ $146830440588574$ $8662995590649012$ $511116755977594614$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is 4.0.39168.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ay_ju$2$(not in LMFDB)