Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 124 x^{2} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.418992481677$, $\pm0.581007518323$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{2}, \sqrt{-133})\) |
Galois group: | $C_2^2$ |
Jacobians: | $190$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5166$ | $26687556$ | $128100315294$ | $645484551206544$ | $3255243548024916126$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $5290$ | $357912$ | $25401094$ | $1804229352$ | $128100346666$ | $9095120158392$ | $645753576839614$ | $45848500718449032$ | $3255243545039951050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 190 curves (of which all are hyperelliptic):
- $y^2=31 x^6+59 x^5+22 x^4+70 x^3+4 x^2+39 x+54$
- $y^2=4 x^6+58 x^5+12 x^4+64 x^3+28 x^2+60 x+23$
- $y^2=51 x^6+59 x^5+37 x^4+39 x^3+25 x^2+67 x+14$
- $y^2=2 x^6+58 x^5+46 x^4+60 x^3+33 x^2+43 x+27$
- $y^2=58 x^6+6 x^5+5 x^4+23 x^2+2 x+11$
- $y^2=51 x^6+42 x^5+35 x^4+19 x^2+14 x+6$
- $y^2=36 x^6+15 x^5+23 x^4+3 x^3+9 x^2+14 x+15$
- $y^2=39 x^6+34 x^5+19 x^4+21 x^3+63 x^2+27 x+34$
- $y^2=2 x^6+16 x^5+12 x^4+14 x^3+52 x^2+63 x+46$
- $y^2=14 x^6+41 x^5+13 x^4+27 x^3+9 x^2+15 x+38$
- $y^2=4 x^6+33 x^5+52 x^4+65 x^3+43 x^2+x+43$
- $y^2=28 x^6+18 x^5+9 x^4+29 x^3+17 x^2+7 x+17$
- $y^2=6 x^6+57 x^5+70 x^4+14 x^3+55 x^2+41 x+62$
- $y^2=42 x^6+44 x^5+64 x^4+27 x^3+30 x^2+3 x+8$
- $y^2=67 x^6+52 x^5+56 x^4+36 x^3+4 x^2+34 x+27$
- $y^2=43 x^6+9 x^5+37 x^4+39 x^3+28 x^2+25 x+47$
- $y^2=52 x^6+2 x^5+64 x^4+14 x^3+58 x^2+40 x+62$
- $y^2=9 x^6+14 x^5+22 x^4+27 x^3+51 x^2+67 x+8$
- $y^2=52 x^6+65 x^5+17 x^4+29 x^3+29 x^2+49 x+32$
- $y^2=9 x^6+29 x^5+48 x^4+61 x^3+61 x^2+59 x+11$
- and 170 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-133})\). |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.eu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-133}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.a_aeu | $4$ | (not in LMFDB) |
2.71.ag_s | $8$ | (not in LMFDB) |
2.71.g_s | $8$ | (not in LMFDB) |