Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 94 x^{2} + 244 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.424783685853$, $\pm0.663068912250$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.171008.1 |
Galois group: | $D_{4}$ |
Jacobians: | $234$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4064$ | $14500352$ | $51444879584$ | $191694421434368$ | $713324401466325984$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $3894$ | $226650$ | $13844910$ | $844574386$ | $51519990630$ | $3142747893834$ | $191707337652318$ | $11694145693959714$ | $713342911134567574$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 234 curves (of which all are hyperelliptic):
- $y^2=60 x^6+39 x^5+48 x^4+24 x^3+35 x^2+8 x+9$
- $y^2=18 x^6+43 x^5+8 x^4+16 x^3+16 x^2+54 x+32$
- $y^2=52 x^6+50 x^5+10 x^4+32 x^3+52 x^2+34 x+12$
- $y^2=47 x^6+17 x^5+32 x^4+19 x^3+11 x^2+32 x+50$
- $y^2=13 x^6+60 x^5+39 x^4+5 x^3+11 x^2+38 x+11$
- $y^2=14 x^6+22 x^5+44 x^4+59 x^3+18 x^2+10 x+35$
- $y^2=21 x^6+24 x^5+22 x^4+38 x^3+48 x^2+51 x+27$
- $y^2=39 x^6+x^5+13 x^4+41 x^3+43 x^2+53 x+41$
- $y^2=2 x^6+32 x^5+34 x^4+18 x^3+44 x^2+25 x+8$
- $y^2=54 x^6+29 x^5+52 x^4+49 x^3+32 x^2+21 x+25$
- $y^2=48 x^6+3 x^5+24 x^4+47 x^3+21 x^2+25 x+12$
- $y^2=35 x^6+59 x^5+28 x^4+31 x^3+35 x^2+25 x+20$
- $y^2=42 x^6+8 x^5+8 x^4+21 x^3+46 x^2+38 x+60$
- $y^2=21 x^6+45 x^5+17 x^4+32 x^2+18 x+48$
- $y^2=23 x^5+8 x^4+19 x^3+23 x^2+49 x+39$
- $y^2=48 x^6+55 x^5+21 x^4+8 x^3+44 x^2+17 x+31$
- $y^2=45 x^6+60 x^5+30 x^4+3 x^3+25 x^2+51 x+17$
- $y^2=18 x^6+35 x^5+44 x^4+44 x^3+7 x^2+57 x+59$
- $y^2=22 x^6+20 x^5+12 x^4+11 x^3+35 x^2+20 x+52$
- $y^2=45 x^6+37 x^5+58 x^4+52 x^3+59 x^2+36 x+28$
- and 214 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is 4.0.171008.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.ae_dq | $2$ | (not in LMFDB) |