Properties

Label 2.23.ae_bw
Base field $\F_{23}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 48 x^{2} - 92 x^{3} + 529 x^{4}$
Frobenius angles:  $\pm0.384155169532$, $\pm0.480547927870$
Angle rank:  $2$ (numerical)
Number field:  4.0.471296.1
Galois group:  $D_{4}$
Jacobians:  $12$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $482$ $324868$ $150939746$ $77990411024$ $41385055791682$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $20$ $610$ $12404$ $278694$ $6429900$ $148044610$ $3404939180$ $78311036094$ $1801151616692$ $41426510446050$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 4.0.471296.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.e_bw$2$(not in LMFDB)