Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 48 x^{2} - 92 x^{3} + 529 x^{4}$ |
Frobenius angles: | $\pm0.384155169532$, $\pm0.480547927870$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.471296.1 |
Galois group: | $D_{4}$ |
Jacobians: | $12$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $482$ | $324868$ | $150939746$ | $77990411024$ | $41385055791682$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $20$ | $610$ | $12404$ | $278694$ | $6429900$ | $148044610$ | $3404939180$ | $78311036094$ | $1801151616692$ | $41426510446050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=13 x^6+19 x^5+10 x^4+15 x^3+10 x^2+10$
- $y^2=10 x^6+4 x^5+10 x^4+7 x^3+16 x^2+8 x+11$
- $y^2=8 x^6+21 x^5+9 x^4+2 x^3+10 x^2+9 x+12$
- $y^2=16 x^5+13 x^4+21 x^3+3 x^2+4 x+9$
- $y^2=18 x^6+13 x^5+6 x^4+12 x^3+7 x^2+22 x+19$
- $y^2=21 x^6+12 x^4+7 x^3+20 x^2+9 x+20$
- $y^2=15 x^6+8 x^5+8 x^4+11 x^3+6 x^2+9 x+7$
- $y^2=10 x^6+19 x^4+7 x^3+5 x^2+9 x+1$
- $y^2=16 x^6+2 x^5+9 x^4+21 x^3+2 x^2+17 x+21$
- $y^2=2 x^6+2 x^5+10 x^4+5 x^3+6 x^2+x+11$
- $y^2=11 x^6+8 x^5+2 x^4+15 x^3+22 x^2+11 x+12$
- $y^2=16 x^6+16 x^5+x^4+12 x^3+9 x^2+15 x+14$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is 4.0.471296.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.e_bw | $2$ | (not in LMFDB) |