Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 142 x^{2} + 292 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.484562275721$, $\pm0.591184399811$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1252352.5 |
Galois group: | $D_{4}$ |
Jacobians: | $126$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5768$ | $29855168$ | $151037623688$ | $806038423952384$ | $4297767472421159688$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $78$ | $5598$ | $388254$ | $28383390$ | $2073139918$ | $151334856894$ | $11047394702814$ | $806460076809150$ | $58871586762285006$ | $4297625829383415838$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=67 x^6+29 x^5+43 x^4+61 x^3+47 x^2+28 x+65$
- $y^2=24 x^6+11 x^5+38 x^4+59 x^3+36 x^2+2 x+7$
- $y^2=32 x^6+68 x^5+64 x^4+14 x^3+62 x^2+19 x+65$
- $y^2=60 x^6+19 x^5+22 x^4+65 x^3+7 x^2+24 x+35$
- $y^2=66 x^6+13 x^5+47 x^4+50 x^3+30 x^2+66 x+47$
- $y^2=30 x^6+40 x^5+60 x^4+71 x^3+9 x^2+51 x+31$
- $y^2=29 x^6+32 x^5+15 x^4+51 x^3+68 x^2+36 x+46$
- $y^2=9 x^6+12 x^5+68 x^4+50 x^3+10 x^2+19 x+57$
- $y^2=30 x^6+18 x^5+60 x^4+46 x^3+20 x^2+59 x+36$
- $y^2=38 x^6+70 x^5+63 x^4+50 x^3+38 x^2+7 x+44$
- $y^2=30 x^6+15 x^5+39 x^4+30 x^2+65 x+56$
- $y^2=20 x^6+22 x^5+19 x^4+41 x^3+35 x^2+67 x+58$
- $y^2=37 x^6+28 x^5+43 x^4+36 x^3+16 x^2+11 x+5$
- $y^2=49 x^6+61 x^5+20 x^4+65 x^3+29 x^2+40 x+52$
- $y^2=69 x^6+65 x^5+5 x^4+17 x^3+27 x^2+39 x+54$
- $y^2=24 x^6+25 x^5+45 x^4+37 x^3+28 x^2+4 x+15$
- $y^2=60 x^6+24 x^5+15 x^4+42 x^3+59 x^2+24 x+7$
- $y^2=15 x^6+60 x^5+21 x^4+7 x^3+21 x^2+2 x$
- $y^2=58 x^6+24 x^5+71 x^4+3 x^3+35 x^2+10 x+20$
- $y^2=48 x^6+62 x^5+32 x^4+32 x^3+34 x^2+66 x+2$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.1252352.5. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.ae_fm | $2$ | (not in LMFDB) |