L(s) = 1 | + 3·3-s + 6·5-s + 6·9-s + 6·11-s + 13-s + 18·15-s − 6·17-s + 4·19-s − 6·23-s + 17·25-s + 9·27-s − 3·29-s − 5·31-s + 18·33-s − 2·37-s + 3·39-s − 3·41-s + 43-s + 36·45-s + 9·47-s − 18·51-s + 6·53-s + 36·55-s + 12·57-s + 3·59-s + 13·61-s + 6·65-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 2.68·5-s + 2·9-s + 1.80·11-s + 0.277·13-s + 4.64·15-s − 1.45·17-s + 0.917·19-s − 1.25·23-s + 17/5·25-s + 1.73·27-s − 0.557·29-s − 0.898·31-s + 3.13·33-s − 0.328·37-s + 0.480·39-s − 0.468·41-s + 0.152·43-s + 5.36·45-s + 1.31·47-s − 2.52·51-s + 0.824·53-s + 4.85·55-s + 1.58·57-s + 0.390·59-s + 1.66·61-s + 0.744·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(9.957875352\) |
\(L(\frac12)\) |
\(\approx\) |
\(9.957875352\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.521639218601219668900771416064, −9.119132060948563196077013066792, −8.760153169971804146104741828183, −8.690412663272820784310503814405, −8.093883675189657535525462497639, −7.44591564765791901932394967454, −6.99016945257227287322964106892, −6.86019793862356855528174165572, −6.16754609675195071409399296125, −6.07132490515510078279087567771, −5.46822607169730739532048724547, −5.17679836486865466942365181029, −4.21197945409123824725531504680, −4.10053570936901699772942819289, −3.58315320934921240019072276239, −2.94680238624405992046525258292, −2.24975969097695172950960929349, −2.13830282938126186905957234257, −1.64474442766836725824304879449, −1.17537700419931611653622631589,
1.17537700419931611653622631589, 1.64474442766836725824304879449, 2.13830282938126186905957234257, 2.24975969097695172950960929349, 2.94680238624405992046525258292, 3.58315320934921240019072276239, 4.10053570936901699772942819289, 4.21197945409123824725531504680, 5.17679836486865466942365181029, 5.46822607169730739532048724547, 6.07132490515510078279087567771, 6.16754609675195071409399296125, 6.86019793862356855528174165572, 6.99016945257227287322964106892, 7.44591564765791901932394967454, 8.093883675189657535525462497639, 8.690412663272820784310503814405, 8.760153169971804146104741828183, 9.119132060948563196077013066792, 9.521639218601219668900771416064