Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 5 x - 6 x^{2} + 155 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.314891072377$, $\pm0.981557739044$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-11})\) |
Galois group: | $C_2^2$ |
Jacobians: | $5$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1116$ | $888336$ | $907937424$ | $852379712064$ | $819850910459076$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $37$ | $925$ | $30472$ | $922969$ | $28636927$ | $887391646$ | $27512653177$ | $852889496209$ | $26439639995032$ | $819628290173125$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which all are hyperelliptic):
- $y^2=x^6+x^3+7$
- $y^2=18 x^5+17 x^4+8 x^3+24 x^2+29 x+28$
- $y^2=19 x^6+26 x^4+16 x^3+x^2+30 x+1$
- $y^2=x^6+x^3+25$
- $y^2=x^6+3 x^3+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{3}}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-11})\). |
The base change of $A$ to $\F_{31^{3}}$ is 1.29791.nc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$ |
Base change
This is a primitive isogeny class.