Properties

Label 2.31.f_ag
Base field $\F_{31}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $1 + 5 x - 6 x^{2} + 155 x^{3} + 961 x^{4}$
Frobenius angles:  $\pm0.314891072377$, $\pm0.981557739044$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-11})\)
Galois group:  $C_2^2$
Jacobians:  $5$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1116$ $888336$ $907937424$ $852379712064$ $819850910459076$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $37$ $925$ $30472$ $922969$ $28636927$ $887391646$ $27512653177$ $852889496209$ $26439639995032$ $819628290173125$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31^{3}}$.

Endomorphism algebra over $\F_{31}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-11})\).
Endomorphism algebra over $\overline{\F}_{31}$
The base change of $A$ to $\F_{31^{3}}$ is 1.29791.nc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-11}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.af_ag$2$(not in LMFDB)
2.31.ak_dj$3$(not in LMFDB)
2.31.a_bl$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.af_ag$2$(not in LMFDB)
2.31.ak_dj$3$(not in LMFDB)
2.31.a_bl$6$(not in LMFDB)
2.31.k_dj$6$(not in LMFDB)
2.31.a_abl$12$(not in LMFDB)