L(s) = 1 | + 6·3-s + 21·9-s + 4·11-s − 6·17-s − 12·19-s − 9·25-s + 54·27-s + 24·33-s + 10·43-s − 13·49-s − 36·51-s − 72·57-s + 20·59-s + 4·67-s − 20·73-s − 54·75-s + 108·81-s + 12·89-s + 28·97-s + 84·99-s + 8·107-s + 4·113-s − 10·121-s + 127-s + 60·129-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 3.46·3-s + 7·9-s + 1.20·11-s − 1.45·17-s − 2.75·19-s − 9/5·25-s + 10.3·27-s + 4.17·33-s + 1.52·43-s − 1.85·49-s − 5.04·51-s − 9.53·57-s + 2.60·59-s + 0.488·67-s − 2.34·73-s − 6.23·75-s + 12·81-s + 1.27·89-s + 2.84·97-s + 8.44·99-s + 0.773·107-s + 0.376·113-s − 0.909·121-s + 0.0887·127-s + 5.28·129-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.544989277\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.544989277\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.175534225967753404519516979495, −8.567359956354704438407736576121, −8.542273196799616534200427297006, −7.938211248845934878732993890823, −7.53566579558648020530867420842, −6.92880645805086748841087984321, −6.53148501748885385532746785562, −5.98494658430119741237026147495, −4.43437896316507372499242030963, −4.42326331313024154570777237165, −3.79033676077549186455122166647, −3.47529908355398035375426875224, −2.47488980077832639227670038418, −2.17545984222807868215828295765, −1.74404149014246056815546005306,
1.74404149014246056815546005306, 2.17545984222807868215828295765, 2.47488980077832639227670038418, 3.47529908355398035375426875224, 3.79033676077549186455122166647, 4.42326331313024154570777237165, 4.43437896316507372499242030963, 5.98494658430119741237026147495, 6.53148501748885385532746785562, 6.92880645805086748841087984321, 7.53566579558648020530867420842, 7.938211248845934878732993890823, 8.542273196799616534200427297006, 8.567359956354704438407736576121, 9.175534225967753404519516979495