Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 59 x^{2} )^{2}$ |
$1 - 20 x + 218 x^{2} - 1180 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.274373026800$, $\pm0.274373026800$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $26$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2500$ | $12250000$ | $42497822500$ | $146991376000000$ | $511146710497562500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $3518$ | $206920$ | $12130638$ | $714966200$ | $42180169358$ | $2488645369880$ | $146830397947678$ | $8662995782869960$ | $511116755282533598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=5 x^6+24 x^5+51 x^4+26 x^3+57 x^2+31 x+1$
- $y^2=3 x^6+28 x^5+22 x^4+28 x^3+29 x^2+35 x+15$
- $y^2=51 x^6+43 x^5+17 x^4+56 x^3+27 x^2+56 x+41$
- $y^2=11 x^6+18 x^5+57 x^4+35 x^3+23 x^2+x+37$
- $y^2=44 x^6+5 x^5+9 x^4+50 x^3+42 x^2+6 x+35$
- $y^2=26 x^6+57 x^5+7 x^4+9 x^3+53 x^2+16 x+40$
- $y^2=42 x^6+58 x^5+58 x^4+21 x^3+38 x^2+5 x+32$
- $y^2=37 x^6+3 x^5+9 x^4+55 x^3+9 x^2+3 x+37$
- $y^2=35 x^6+4 x^5+53 x^4+42 x^3+28 x^2+15 x+21$
- $y^2=41 x^5+55 x^4+51 x^3+56 x^2+37 x+45$
- $y^2=53 x^5+54 x^4+36 x^3+54 x^2+53 x$
- $y^2=34 x^6+15 x^4+15 x^2+34$
- $y^2=9 x^6+42 x^5+33 x^4+43 x^3+33 x^2+42 x+9$
- $y^2=32 x^6+7 x^5+4 x^4+55 x^3+25 x^2+19 x+54$
- $y^2=32 x^6+47 x^5+30 x^4+33 x^3+37 x^2+56 x+14$
- $y^2=31 x^6+54 x^5+50 x^4+18 x^3+50 x^2+54 x+31$
- $y^2=36 x^6+3 x^5+5 x^4+45 x^3+18 x^2+47 x+54$
- $y^2=28 x^6+50 x^5+3 x^4+40 x^3+15 x^2+15 x+52$
- $y^2=49 x^6+48 x^5+9 x^4+52 x^3+24 x^2+34 x+19$
- $y^2=39 x^6+45 x^5+20 x^4+55 x^3+20 x^2+45 x+39$
- $y^2=14 x^6+53 x^5+51 x^4+43 x^3+43 x^2+49 x+50$
- $y^2=43 x^5+47 x^4+8 x^3+31 x^2+49 x+2$
- $y^2=36 x^6+18 x^5+x^4+31 x^3+x^2+18 x+36$
- $y^2=51 x^6+24 x^5+30 x^4+2 x^3+33 x^2+55 x+29$
- $y^2=11 x^6+33 x^5+39 x^4+12 x^3+39 x^2+33 x+11$
- $y^2=53 x^6+46 x^4+46 x^2+53$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-34}) \)$)$ |
Base change
This is a primitive isogeny class.