L(s) = 1 | + 2·5-s + 2·7-s − 4·11-s − 6·13-s − 2·19-s − 8·23-s − 2·25-s + 4·31-s + 4·35-s + 8·41-s − 4·43-s − 12·47-s + 3·49-s − 20·53-s − 8·55-s − 14·59-s − 18·61-s − 12·65-s − 8·67-s − 8·71-s + 12·73-s − 8·77-s + 8·79-s − 14·83-s + 12·89-s − 12·91-s − 4·95-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 0.755·7-s − 1.20·11-s − 1.66·13-s − 0.458·19-s − 1.66·23-s − 2/5·25-s + 0.718·31-s + 0.676·35-s + 1.24·41-s − 0.609·43-s − 1.75·47-s + 3/7·49-s − 2.74·53-s − 1.07·55-s − 1.82·59-s − 2.30·61-s − 1.48·65-s − 0.977·67-s − 0.949·71-s + 1.40·73-s − 0.911·77-s + 0.900·79-s − 1.53·83-s + 1.27·89-s − 1.25·91-s − 0.410·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.943757221333397354202199069921, −7.940563827279596198148530255456, −7.54262144115475214564657783720, −7.53326932241791112376815230568, −6.62086825749603240306271901745, −6.38358407423723495699359777012, −5.92145618372123992021744740843, −5.86713511743146848773894653514, −5.10226636323751261448112923068, −4.88755832829268555178217164302, −4.57609327523921074151998906291, −4.35972553244539342656690799921, −3.45801405956865100209548083297, −3.14956405513278554719313963327, −2.48324751523398781163917704888, −2.31208576574067095957119909227, −1.73619235058518168362046950065, −1.41445032594151008781846420361, 0, 0,
1.41445032594151008781846420361, 1.73619235058518168362046950065, 2.31208576574067095957119909227, 2.48324751523398781163917704888, 3.14956405513278554719313963327, 3.45801405956865100209548083297, 4.35972553244539342656690799921, 4.57609327523921074151998906291, 4.88755832829268555178217164302, 5.10226636323751261448112923068, 5.86713511743146848773894653514, 5.92145618372123992021744740843, 6.38358407423723495699359777012, 6.62086825749603240306271901745, 7.53326932241791112376815230568, 7.54262144115475214564657783720, 7.940563827279596198148530255456, 7.943757221333397354202199069921