Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x + 238 x^{2} - 1552 x^{3} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.281750612509$, $\pm0.442681382493$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.136400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $312$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8080$ | $90625280$ | $835414155280$ | $7837716465766400$ | $73741615656484042000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $9630$ | $915346$ | $88532478$ | $8587247442$ | $832971836190$ | $80798283687826$ | $7837433447770878$ | $760231057108377682$ | $73742412700007221150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 312 curves (of which all are hyperelliptic):
- $y^2=68 x^6+12 x^5+76 x^4+3 x^3+21 x^2+53 x+71$
- $y^2=15 x^6+33 x^5+94 x^4+33 x^3+5 x^2+60 x+78$
- $y^2=27 x^6+82 x^5+53 x^4+41 x^3+x^2+66 x+30$
- $y^2=5 x^6+82 x^5+3 x^4+94 x^3+63 x^2+8 x+17$
- $y^2=52 x^6+95 x^5+79 x^4+61 x^3+35 x^2+43 x+90$
- $y^2=63 x^6+39 x^5+59 x^4+80 x^3+9 x^2+36 x+72$
- $y^2=18 x^6+87 x^5+34 x^4+38 x^3+20 x^2+14 x+96$
- $y^2=71 x^6+82 x^5+57 x^4+81 x^3+23 x^2+77 x+2$
- $y^2=22 x^6+56 x^5+93 x^4+5 x^3+19 x^2+94 x+25$
- $y^2=23 x^6+71 x^5+12 x^4+73 x^3+33 x^2+23 x+75$
- $y^2=31 x^6+95 x^5+38 x^4+11 x^3+23 x^2+26 x+67$
- $y^2=11 x^6+74 x^5+85 x^4+47 x^3+94 x+72$
- $y^2=5 x^6+26 x^5+60 x^4+44 x^3+35 x^2+30 x+71$
- $y^2=5 x^6+12 x^5+58 x^3+60 x^2+5 x+85$
- $y^2=33 x^6+83 x^5+30 x^4+33 x^3+41 x^2+78 x+90$
- $y^2=81 x^6+43 x^5+29 x^4+94 x^3+67 x^2+50 x+14$
- $y^2=22 x^5+94 x^4+24 x^3+26 x^2+68 x+52$
- $y^2=41 x^6+96 x^5+34 x^4+35 x^3+79 x^2+94 x+78$
- $y^2=10 x^6+10 x^5+29 x^4+21 x^3+54 x^2+95 x+20$
- $y^2=38 x^6+41 x^5+43 x^4+74 x^3+31 x^2+22 x+62$
- and 292 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is 4.0.136400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.q_je | $2$ | (not in LMFDB) |