Properties

Label 2.83.o_ic
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $1 + 14 x + 210 x^{2} + 1162 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.584202214349$, $\pm0.669206851205$
Angle rank:  $2$ (numerical)
Number field:  4.0.1907600.1
Galois group:  $D_{4}$
Jacobians:  $60$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8276$ $49027024$ $325462216004$ $2252316386775296$ $15516750442211090116$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $98$ $7114$ $569198$ $47458830$ $3939220698$ $326939212378$ $27136046684390$ $2252292323498334$ $186940255001290994$ $15516041184748654314$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is 4.0.1907600.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.ao_ic$2$(not in LMFDB)