Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 14 x + 210 x^{2} + 1162 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.584202214349$, $\pm0.669206851205$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1907600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $60$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8276$ | $49027024$ | $325462216004$ | $2252316386775296$ | $15516750442211090116$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $7114$ | $569198$ | $47458830$ | $3939220698$ | $326939212378$ | $27136046684390$ | $2252292323498334$ | $186940255001290994$ | $15516041184748654314$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=67 x^6+65 x^5+53 x^4+60 x^3+35 x^2+6 x+77$
- $y^2=59 x^6+6 x^5+78 x^4+71 x^3+x^2+56 x+53$
- $y^2=45 x^6+14 x^5+75 x^4+22 x^3+5 x^2+21 x+78$
- $y^2=76 x^6+73 x^5+45 x^4+68 x^3+81 x^2+24 x+7$
- $y^2=32 x^6+42 x^5+27 x^4+59 x^3+32 x^2+66 x+46$
- $y^2=x^6+34 x^5+15 x^4+74 x^3+15 x^2+80 x+39$
- $y^2=48 x^6+56 x^5+35 x^4+82 x^3+80 x^2+80 x+12$
- $y^2=51 x^6+73 x^5+79 x^4+82 x^3+42 x^2+7 x+8$
- $y^2=14 x^5+25 x^4+77 x^3+74 x^2+80 x+34$
- $y^2=76 x^6+5 x^5+12 x^4+32 x^3+23 x^2+35 x+78$
- $y^2=10 x^6+57 x^5+43 x^4+10 x^3+77 x^2+2 x+65$
- $y^2=13 x^6+33 x^5+55 x^4+17 x^3+79 x^2+48 x+15$
- $y^2=30 x^6+71 x^5+43 x^4+70 x^3+59 x^2+49 x+51$
- $y^2=4 x^6+72 x^5+34 x^4+64 x^3+41 x^2+75 x+82$
- $y^2=69 x^6+39 x^5+50 x^4+69 x^3+12 x^2+76 x+3$
- $y^2=6 x^6+45 x^5+16 x^4+22 x^3+42 x^2+24 x+40$
- $y^2=22 x^6+35 x^5+51 x^4+82 x^3+10 x^2+x+34$
- $y^2=70 x^6+78 x^5+32 x^4+49 x^3+16 x^2+25 x+10$
- $y^2=5 x^6+37 x^5+76 x^4+62 x^3+26 x^2+81 x+72$
- $y^2=7 x^6+10 x^5+38 x^4+47 x^3+40 x^2+53 x+35$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is 4.0.1907600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.ao_ic | $2$ | (not in LMFDB) |