L(s) = 1 | − 2·7-s − 4·17-s + 6·25-s + 16·31-s + 4·41-s − 8·47-s + 3·49-s + 16·71-s + 12·73-s + 32·79-s + 28·89-s − 20·97-s + 8·103-s − 28·113-s + 8·119-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 0.970·17-s + 6/5·25-s + 2.87·31-s + 0.624·41-s − 1.16·47-s + 3/7·49-s + 1.89·71-s + 1.40·73-s + 3.60·79-s + 2.96·89-s − 2.03·97-s + 0.788·103-s − 2.63·113-s + 0.733·119-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.708010613\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.708010613\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.575686048537365608585292180295, −8.234478001984109873978363518907, −7.87033671697521534918003061363, −7.73556119101459360541781670367, −6.97396435540873469297528334742, −6.59106095295739766102385936769, −6.43352084217862655939081795922, −6.42490356413633172068184548476, −5.67308861390616284562900152792, −5.15458292471109153400824436071, −4.82143923734404707735838866992, −4.64052140343595092000810765717, −3.90958286248636377622440988773, −3.73445382354832769524019201901, −3.07558292377551450936890536266, −2.75313294668644967488786812973, −2.32574174193256105547932828870, −1.80592410161092673690940912608, −0.855076024767812872077051289248, −0.63122428606590345487515118807,
0.63122428606590345487515118807, 0.855076024767812872077051289248, 1.80592410161092673690940912608, 2.32574174193256105547932828870, 2.75313294668644967488786812973, 3.07558292377551450936890536266, 3.73445382354832769524019201901, 3.90958286248636377622440988773, 4.64052140343595092000810765717, 4.82143923734404707735838866992, 5.15458292471109153400824436071, 5.67308861390616284562900152792, 6.42490356413633172068184548476, 6.43352084217862655939081795922, 6.59106095295739766102385936769, 6.97396435540873469297528334742, 7.73556119101459360541781670367, 7.87033671697521534918003061363, 8.234478001984109873978363518907, 8.575686048537365608585292180295