L(s) = 1 | + 2·5-s − 2·7-s + 4·11-s − 6·13-s + 2·19-s + 8·23-s − 2·25-s − 4·31-s − 4·35-s + 8·41-s + 4·43-s + 12·47-s + 3·49-s − 20·53-s + 8·55-s + 14·59-s − 18·61-s − 12·65-s + 8·67-s + 8·71-s + 12·73-s − 8·77-s − 8·79-s + 14·83-s + 12·89-s + 12·91-s + 4·95-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.755·7-s + 1.20·11-s − 1.66·13-s + 0.458·19-s + 1.66·23-s − 2/5·25-s − 0.718·31-s − 0.676·35-s + 1.24·41-s + 0.609·43-s + 1.75·47-s + 3/7·49-s − 2.74·53-s + 1.07·55-s + 1.82·59-s − 2.30·61-s − 1.48·65-s + 0.977·67-s + 0.949·71-s + 1.40·73-s − 0.911·77-s − 0.900·79-s + 1.53·83-s + 1.27·89-s + 1.25·91-s + 0.410·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16257024 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.196119673\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.196119673\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.920868537315266251190266548871, −8.274456356665318971536017188428, −7.59441071030179057448961562297, −7.55697032260175243964962435700, −7.24231808989139700875491340724, −6.75194237814926577108489139463, −6.26906195584521488628022417148, −6.23801249531296123197739089397, −5.73137956258066710161386631477, −5.19792256139613805397175975375, −4.94741979568560377917040024331, −4.60349033228626955811018317994, −3.94941673211153744495821271853, −3.65448366850550441181475000701, −3.07854810057956205889283035085, −2.77162877342586045691452326091, −2.07088810042830686614321793020, −1.96462480003166355943015198923, −1.01446912297689590772616054098, −0.59114936311307336238315290528,
0.59114936311307336238315290528, 1.01446912297689590772616054098, 1.96462480003166355943015198923, 2.07088810042830686614321793020, 2.77162877342586045691452326091, 3.07854810057956205889283035085, 3.65448366850550441181475000701, 3.94941673211153744495821271853, 4.60349033228626955811018317994, 4.94741979568560377917040024331, 5.19792256139613805397175975375, 5.73137956258066710161386631477, 6.23801249531296123197739089397, 6.26906195584521488628022417148, 6.75194237814926577108489139463, 7.24231808989139700875491340724, 7.55697032260175243964962435700, 7.59441071030179057448961562297, 8.274456356665318971536017188428, 8.920868537315266251190266548871