Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x + 34 x^{2} - 38 x^{3} + 361 x^{4}$ |
Frobenius angles: | $\pm0.378945583780$, $\pm0.545284718377$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.122000.2 |
Galois group: | $D_{4}$ |
Jacobians: | $24$ |
Isomorphism classes: | 32 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $356$ | $155216$ | $47611796$ | $16899918080$ | $6128782130196$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $426$ | $6942$ | $129678$ | $2475178$ | $47045946$ | $893849142$ | $16983713118$ | $322689101538$ | $6131063080906$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=6 x^5+8 x^4+3 x^3+18 x^2+7 x+14$
- $y^2=18 x^6+6 x^5+16 x^4+9 x^3+x+16$
- $y^2=15 x^6+12 x^5+18 x^4+2 x^3+18 x^2+15 x+18$
- $y^2=15 x^6+6 x^5+12 x^4+11 x^3+15 x^2+2 x+17$
- $y^2=6 x^6+15 x^5+13 x^4+3 x^3+14 x^2+3 x+7$
- $y^2=6 x^6+7 x^5+10 x^4+15 x^3+x^2+10 x+18$
- $y^2=11 x^6+4 x^4+17 x^3+15 x^2+15 x+18$
- $y^2=2 x^6+6 x^5+5 x^4+6 x^3+3 x^2+4 x+6$
- $y^2=12 x^6+3 x^5+9 x^4+x^3+5 x^2+13 x+7$
- $y^2=10 x^6+17 x^5+7 x^4+2 x^3+3 x^2+9 x+8$
- $y^2=11 x^6+8 x^5+7 x^4+15 x^3+14 x^2+14 x+6$
- $y^2=16 x^6+10 x^5+15 x^4+x^3+9 x^2+18 x+14$
- $y^2=16 x^6+13 x^5+8 x^4+11 x^3+11 x^2+8 x+4$
- $y^2=2 x^6+10 x^5+18 x^4+10 x^3+10 x^2+7 x+12$
- $y^2=13 x^6+14 x^5+7 x^4+15 x^3+16 x^2+16 x+4$
- $y^2=10 x^6+18 x^4+12 x^3+15 x+17$
- $y^2=6 x^6+14 x^5+6 x^4+16 x^3+6 x^2+5 x+8$
- $y^2=3 x^6+7 x^5+3 x^4+10 x^3+5 x+1$
- $y^2=7 x^6+4 x^5+16 x^4+2 x^3+15 x^2+7 x+4$
- $y^2=14 x^6+7 x^5+x^4+2 x^3+13 x^2+15 x+18$
- $y^2=18 x^6+7 x^5+x^4+12 x^3+15 x^2+7$
- $y^2=13 x^6+8 x^5+15 x^4+17 x^3+13 x^2+10 x$
- $y^2=x^6+9 x^5+12 x^4+18 x^3+2 x^2+6 x+14$
- $y^2=18 x^6+4 x^5+17 x^4+x^3+6 x^2+16 x+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is 4.0.122000.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.c_bi | $2$ | (not in LMFDB) |