Properties

Label 2.11.ae_g
Base field $\F_{11}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 6 x^{2} - 44 x^{3} + 121 x^{4}$
Frobenius angles:  $\pm0.0702993117305$, $\pm0.621564005517$
Angle rank:  $2$ (numerical)
Number field:  \(\Q(\zeta_{5})\)
Galois group:  $C_4$
Jacobians:  $10$
Isomorphism classes:  18

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $80$ $14080$ $1612880$ $211988480$ $26001250000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $118$ $1208$ $14478$ $161448$ $1769158$ $19482968$ $214393758$ $2357958728$ $25937365398$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{5})\).

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.e_g$2$2.121.ae_acw
2.11.aj_bp$5$(not in LMFDB)
2.11.b_aj$5$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.e_g$2$2.121.ae_acw
2.11.aj_bp$5$(not in LMFDB)
2.11.b_aj$5$(not in LMFDB)
2.11.b_v$5$(not in LMFDB)
2.11.l_bz$5$(not in LMFDB)
2.11.al_bz$10$(not in LMFDB)
2.11.ab_aj$10$(not in LMFDB)
2.11.ab_v$10$(not in LMFDB)
2.11.j_bp$10$(not in LMFDB)