L(s) = 1 | − 2·2-s − 2·3-s + 4-s + 4·6-s + 3·9-s − 2·12-s + 4·13-s + 16-s + 4·17-s − 6·18-s + 4·19-s + 4·23-s − 8·26-s − 4·27-s + 12·29-s − 4·31-s + 2·32-s − 8·34-s + 3·36-s − 4·37-s − 8·38-s − 8·39-s + 12·41-s − 16·43-s − 8·46-s − 2·48-s − 8·51-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 1/2·4-s + 1.63·6-s + 9-s − 0.577·12-s + 1.10·13-s + 1/4·16-s + 0.970·17-s − 1.41·18-s + 0.917·19-s + 0.834·23-s − 1.56·26-s − 0.769·27-s + 2.22·29-s − 0.718·31-s + 0.353·32-s − 1.37·34-s + 1/2·36-s − 0.657·37-s − 1.29·38-s − 1.28·39-s + 1.87·41-s − 2.43·43-s − 1.17·46-s − 0.288·48-s − 1.12·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13505625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13505625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7950647559\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7950647559\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.571327948235967976946009501396, −8.559944857232549410786859797932, −7.995283391062523981352608948989, −7.79254177442945549336412054769, −7.17626620246067677294004355759, −7.02578906095780009756045214460, −6.47978991590982584859260278994, −6.13639690037221002717290866485, −5.95410471371083595305361060187, −5.24538762103696800398330916570, −5.00145870873983000882913422322, −4.85949880930655039846534616692, −3.98768933666689880663247217387, −3.70609481425852835797478177266, −3.21105630717060706787434498900, −2.72374559567764598901227615748, −1.97670019864406969303353388169, −1.17408263781867680543618585404, −1.02882918290376231323759197309, −0.50859873973369279042624339557,
0.50859873973369279042624339557, 1.02882918290376231323759197309, 1.17408263781867680543618585404, 1.97670019864406969303353388169, 2.72374559567764598901227615748, 3.21105630717060706787434498900, 3.70609481425852835797478177266, 3.98768933666689880663247217387, 4.85949880930655039846534616692, 5.00145870873983000882913422322, 5.24538762103696800398330916570, 5.95410471371083595305361060187, 6.13639690037221002717290866485, 6.47978991590982584859260278994, 7.02578906095780009756045214460, 7.17626620246067677294004355759, 7.79254177442945549336412054769, 7.995283391062523981352608948989, 8.559944857232549410786859797932, 8.571327948235967976946009501396