Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x - 6 x^{2} + 124 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.302115536045$, $\pm0.890683594591$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.18432.2 |
Galois group: | $C_4$ |
Jacobians: | $56$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1084$ | $897552$ | $902756284$ | $853952514048$ | $819573491338684$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $934$ | $30300$ | $924670$ | $28627236$ | $887482150$ | $27512058204$ | $852892266238$ | $26439618421284$ | $819628398935974$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=10 x^6+16 x^5+25 x^4+19 x^3+25 x^2+14 x+27$
- $y^2=26 x^6+16 x^5+12 x^4+15 x^3+5 x^2+27 x+24$
- $y^2=11 x^6+21 x^5+x^4+13 x^3+16 x^2+27 x+16$
- $y^2=11 x^6+x^5+15 x^4+15 x^3+23 x^2+x+21$
- $y^2=x^6+23 x^4+12 x^3+9 x^2+6 x+19$
- $y^2=11 x^6+23 x^5+6 x^4+27 x^3+10 x^2+10 x$
- $y^2=26 x^6+30 x^5+14 x^4+24 x^3+4 x^2+28$
- $y^2=18 x^6+18 x^5+11 x^4+23 x^3+26 x^2+18 x+12$
- $y^2=19 x^6+5 x^5+17 x^4+13 x^3+26 x^2+23 x+4$
- $y^2=25 x^6+7 x^5+22 x^4+14 x^3+7 x^2+18 x+5$
- $y^2=2 x^6+26 x^5+2 x^4+12 x^3+28 x^2+9 x$
- $y^2=21 x^6+14 x^5+2 x^4+16 x^3+30 x^2+7 x+29$
- $y^2=5 x^6+14 x^5+13 x^4+6 x^3+11 x^2+4 x+22$
- $y^2=25 x^6+30 x^5+4 x^4+11 x^2+25 x+20$
- $y^2=4 x^6+19 x^5+16 x^4+16 x^2+8 x+4$
- $y^2=11 x^6+12 x^5+8 x^4+26 x^3+15 x^2+7 x+11$
- $y^2=28 x^6+17 x^5+9 x^4+9 x^3+23 x^2+22 x+16$
- $y^2=23 x^6+10 x^5+4 x^4+3 x^3+25 x^2+2 x+4$
- $y^2=26 x^6+5 x^5+26 x^4+3 x^2+14 x+1$
- $y^2=5 x^6+21 x^5+7 x^4+8 x^3+11 x^2+29 x+18$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is 4.0.18432.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.ae_ag | $2$ | (not in LMFDB) |