| L(s) = 1 | + 3·3-s + 3·5-s − 4·7-s + 3·9-s + 5·11-s − 2·13-s + 9·15-s + 17-s + 7·19-s − 12·21-s + 23-s + 5·25-s − 4·29-s + 5·31-s + 15·33-s − 12·35-s + 11·37-s − 6·39-s − 12·41-s − 24·43-s + 9·45-s + 7·47-s + 9·49-s + 3·51-s − 11·53-s + 15·55-s + 21·57-s + ⋯ |
| L(s) = 1 | + 1.73·3-s + 1.34·5-s − 1.51·7-s + 9-s + 1.50·11-s − 0.554·13-s + 2.32·15-s + 0.242·17-s + 1.60·19-s − 2.61·21-s + 0.208·23-s + 25-s − 0.742·29-s + 0.898·31-s + 2.61·33-s − 2.02·35-s + 1.80·37-s − 0.960·39-s − 1.87·41-s − 3.65·43-s + 1.34·45-s + 1.02·47-s + 9/7·49-s + 0.420·51-s − 1.51·53-s + 2.02·55-s + 2.78·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.322551804\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.322551804\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60967143954135412666047246861, −11.39506752579949328730911537630, −10.19472842374802337302045069941, −10.16913671021276343889255111225, −9.491743214845896128690214682996, −9.403657193569161283468588170662, −9.239411569961367696988309283461, −8.398323846673456380759246482547, −8.187036073048470485208941784715, −7.39511532184473414310945453069, −6.83745258258507834535094057054, −6.46422035105171359304400520942, −6.06715735369941119631466392143, −5.27722160762044589401332269336, −4.75264551703487527135149599897, −3.52704762417780248294167260563, −3.47753579934201837203442846534, −2.86655638765293398172969327486, −2.19248755052065571957693200249, −1.33026426814471304560485658599,
1.33026426814471304560485658599, 2.19248755052065571957693200249, 2.86655638765293398172969327486, 3.47753579934201837203442846534, 3.52704762417780248294167260563, 4.75264551703487527135149599897, 5.27722160762044589401332269336, 6.06715735369941119631466392143, 6.46422035105171359304400520942, 6.83745258258507834535094057054, 7.39511532184473414310945453069, 8.187036073048470485208941784715, 8.398323846673456380759246482547, 9.239411569961367696988309283461, 9.403657193569161283468588170662, 9.491743214845896128690214682996, 10.16913671021276343889255111225, 10.19472842374802337302045069941, 11.39506752579949328730911537630, 11.60967143954135412666047246861