Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 11 x + 48 x^{2} - 803 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.0559458087667$, $\pm0.610720857900$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-19})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $173$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4564$ | $28260288$ | $150497443600$ | $806175244594944$ | $4297691480737722004$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $63$ | $5305$ | $386862$ | $28388209$ | $2073103263$ | $151333458190$ | $11047391982711$ | $806460135758689$ | $58871586718976766$ | $4297625826560340025$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 173 curves (of which all are hyperelliptic):
- $y^2=35 x^6+10 x^5+11 x^4+66 x^3+23 x^2+48 x+67$
- $y^2=51 x^6+23 x^5+33 x^4+69 x^3+23 x^2+57 x+44$
- $y^2=58 x^6+52 x^5+12 x^4+63 x^3+2 x^2+21 x+70$
- $y^2=12 x^6+5 x^5+9 x^4+20 x^3+54 x^2+32 x+15$
- $y^2=3 x^6+17 x^5+60 x^4+11 x^3+14 x^2+17 x+2$
- $y^2=71 x^6+32 x^5+6 x^4+28 x^3+5 x^2+70 x+18$
- $y^2=69 x^6+71 x^5+7 x^4+24 x^3+x^2+63 x+47$
- $y^2=7 x^6+38 x^5+5 x^4+31 x^3+21 x^2+22 x+60$
- $y^2=67 x^6+5 x^5+9 x^4+5 x^3+36 x^2+19 x+26$
- $y^2=10 x^5+67 x^4+26 x^3+39 x^2+26 x+62$
- $y^2=29 x^6+48 x^5+43 x^4+8 x^3+39 x^2+18 x+48$
- $y^2=9 x^6+32 x^5+72 x^4+27 x^3+x^2+47 x+57$
- $y^2=45 x^6+2 x^5+18 x^4+63 x^3+24 x^2+21 x+61$
- $y^2=58 x^6+22 x^5+22 x^4+51 x^3+40 x^2+7 x+31$
- $y^2=54 x^6+40 x^5+8 x^4+57 x^3+33 x^2+15 x+24$
- $y^2=x^6+59 x^5+47 x^4+13 x^3+36 x^2+14 x+58$
- $y^2=40 x^6+52 x^5+14 x^4+12 x^3+38 x^2+49 x+13$
- $y^2=38 x^6+32 x^5+49 x^4+36 x^3+56 x^2+13 x+12$
- $y^2=5 x^6+48 x^5+59 x^4+45 x^3+3 x^2+38 x+58$
- $y^2=34 x^6+14 x^5+15 x^4+27 x^3+40 x^2+30 x+24$
- and 153 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{3}}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-19})\). |
| The base change of $A$ to $\F_{73^{3}}$ is 1.389017.abpm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.