| L(s) = 1 | + 6·5-s − 7-s + 3·9-s + 2·11-s − 5·13-s + 7·17-s − 2·19-s + 4·23-s + 17·25-s − 29-s + 8·31-s − 6·35-s − 37-s + 3·41-s + 6·43-s + 18·45-s − 20·47-s − 14·53-s + 12·55-s − 6·59-s − 7·61-s − 3·63-s − 30·65-s − 8·67-s + 6·71-s − 22·73-s − 2·77-s + ⋯ |
| L(s) = 1 | + 2.68·5-s − 0.377·7-s + 9-s + 0.603·11-s − 1.38·13-s + 1.69·17-s − 0.458·19-s + 0.834·23-s + 17/5·25-s − 0.185·29-s + 1.43·31-s − 1.01·35-s − 0.164·37-s + 0.468·41-s + 0.914·43-s + 2.68·45-s − 2.91·47-s − 1.92·53-s + 1.61·55-s − 0.781·59-s − 0.896·61-s − 0.377·63-s − 3.72·65-s − 0.977·67-s + 0.712·71-s − 2.57·73-s − 0.227·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.802267355\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.802267355\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.64492013222373305915677248092, −11.18520933320882636094504571450, −10.23431374179834033598698996549, −10.11657093232847075288651127355, −9.937329806638096280548667497977, −9.593727841148534079709917470429, −9.101845365791697172004139227886, −8.654453126504639617468003886054, −7.69198551631788915066343785741, −7.44551575061954126480534635047, −6.60295912425889250865853283146, −6.47924636163764428642298671077, −5.66354771492519068520748451504, −5.65707523803847805723905882179, −4.57413443765668782587013113290, −4.56519468779227012781153479697, −2.96449856701690682339762277180, −2.95105732575103744411499322197, −1.60022620292165731878648412676, −1.57827748364288420912625091633,
1.57827748364288420912625091633, 1.60022620292165731878648412676, 2.95105732575103744411499322197, 2.96449856701690682339762277180, 4.56519468779227012781153479697, 4.57413443765668782587013113290, 5.65707523803847805723905882179, 5.66354771492519068520748451504, 6.47924636163764428642298671077, 6.60295912425889250865853283146, 7.44551575061954126480534635047, 7.69198551631788915066343785741, 8.654453126504639617468003886054, 9.101845365791697172004139227886, 9.593727841148534079709917470429, 9.937329806638096280548667497977, 10.11657093232847075288651127355, 10.23431374179834033598698996549, 11.18520933320882636094504571450, 11.64492013222373305915677248092