L(s) = 1 | − 2-s + 3-s + 4-s + 6·5-s − 6-s − 8-s + 9-s − 6·10-s + 12-s + 6·15-s + 16-s − 18-s − 2·19-s + 6·20-s − 24-s + 18·25-s + 27-s − 6·30-s + 6·31-s − 32-s + 36-s + 2·38-s − 6·40-s + 6·45-s + 48-s − 6·49-s − 18·50-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 2.68·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 1.89·10-s + 0.288·12-s + 1.54·15-s + 1/4·16-s − 0.235·18-s − 0.458·19-s + 1.34·20-s − 0.204·24-s + 18/5·25-s + 0.192·27-s − 1.09·30-s + 1.07·31-s − 0.176·32-s + 1/6·36-s + 0.324·38-s − 0.948·40-s + 0.894·45-s + 0.144·48-s − 6/7·49-s − 2.54·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.826106617\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.826106617\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.923268843103844861828455334607, −8.485922665308838727420865556669, −8.078966716202023698376208824441, −7.39457308942813865429562304774, −6.86705773814396300275345025345, −6.40022579185519670311395073938, −6.07041245574303060951569887560, −5.63809912523887288468777388959, −5.04364993723758411755085158766, −4.51079169084603022117774951723, −3.56524024166826191750674300170, −2.81509763399054230009310554993, −2.31066753227654707638037984112, −1.86151447951568220626122200470, −1.15985181956352118266231271206,
1.15985181956352118266231271206, 1.86151447951568220626122200470, 2.31066753227654707638037984112, 2.81509763399054230009310554993, 3.56524024166826191750674300170, 4.51079169084603022117774951723, 5.04364993723758411755085158766, 5.63809912523887288468777388959, 6.07041245574303060951569887560, 6.40022579185519670311395073938, 6.86705773814396300275345025345, 7.39457308942813865429562304774, 8.078966716202023698376208824441, 8.485922665308838727420865556669, 8.923268843103844861828455334607