Properties

Label 2.31.ag_ck
Base field $\F_{31}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 31 x^{2} )( 1 + 31 x^{2} )$
  $1 - 6 x + 62 x^{2} - 186 x^{3} + 961 x^{4}$
Frobenius angles:  $\pm0.318871840175$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $60$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $832$ $1011712$ $897752128$ $852266188800$ $819538849509952$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $1050$ $30134$ $922846$ $28626026$ $887505882$ $27512366726$ $852889484926$ $26439631596794$ $819628391725530$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31^{2}}$.

Endomorphism algebra over $\F_{31}$
The isogeny class factors as 1.31.ag $\times$ 1.31.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{31}$
The base change of $A$ to $\F_{31^{2}}$ is 1.961.ba $\times$ 1.961.ck. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.g_ck$2$(not in LMFDB)