Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 31 x^{2} )( 1 + 31 x^{2} )$ |
$1 - 6 x + 62 x^{2} - 186 x^{3} + 961 x^{4}$ | |
Frobenius angles: | $\pm0.318871840175$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $60$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $832$ | $1011712$ | $897752128$ | $852266188800$ | $819538849509952$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $26$ | $1050$ | $30134$ | $922846$ | $28626026$ | $887505882$ | $27512366726$ | $852889484926$ | $26439631596794$ | $819628391725530$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=23 x^6+18 x^5+4 x^4+14 x^3+9 x^2+28 x+26$
- $y^2=7 x^6+26 x^5+28 x^4+20 x^3+8 x^2+3 x+23$
- $y^2=2 x^6+9 x^5+25 x^4+10 x^3+x^2+7 x+1$
- $y^2=5 x^6+14 x^5+28 x^4+5 x^3+25 x^2+25 x+10$
- $y^2=3 x^6+3 x^5+27 x^4+17 x^3+11 x^2+13 x+26$
- $y^2=11 x^6+6 x^5+30 x^4+x^3+17 x^2+12 x$
- $y^2=4 x^6+4 x^5+2 x^4+25 x^3+3 x^2+24 x+21$
- $y^2=30 x^6+9 x^5+5 x^4+11 x^3+13 x^2+4 x+12$
- $y^2=6 x^6+9 x^5+15 x^4+17 x^3+9 x^2+28 x+3$
- $y^2=7 x^6+6 x^5+4 x^4+20 x^3+25 x^2+6 x+23$
- $y^2=18 x^6+10 x^5+11 x^4+5 x^3+26 x^2+15 x$
- $y^2=11 x^6+6 x^5+16 x^4+16 x^3+12 x^2+29 x+29$
- $y^2=8 x^6+28 x^5+13 x^4+5 x^3+26 x^2+26 x+22$
- $y^2=9 x^6+2 x^5+x^4+24 x^3+10 x^2+14 x+10$
- $y^2=16 x^6+14 x^5+13 x^4+15 x^3+13 x^2+14 x+16$
- $y^2=22 x^6+13 x^5+2 x^4+19 x^3+6 x^2+3 x+11$
- $y^2=2 x^5+14 x^4+18 x^3+14 x^2+16 x+29$
- $y^2=24 x^6+14 x^5+9 x^4+15 x^3+16 x^2+20 x$
- $y^2=15 x^6+16 x^5+22 x^4+14 x^3+21 x^2+29 x+21$
- $y^2=12 x^6+5 x^5+5 x^4+29 x^3+15 x^2+30 x+19$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$The isogeny class factors as 1.31.ag $\times$ 1.31.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{31^{2}}$ is 1.961.ba $\times$ 1.961.ck. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.g_ck | $2$ | (not in LMFDB) |