Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 4 x + 79 x^{2} )( 1 + 10 x + 79 x^{2} )$ |
| $1 + 14 x + 198 x^{2} + 1106 x^{3} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.572243955238$, $\pm0.690177289346$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $322$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7560$ | $40219200$ | $241978340520$ | $1517164750080000$ | $9468637995407005800$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $94$ | $6442$ | $490786$ | $38951518$ | $3077174014$ | $243086769322$ | $19203907784386$ | $1517108823555838$ | $119851596054387934$ | $9468276084531252202$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 322 curves (of which all are hyperelliptic):
- $y^2=45 x^6+57 x^5+38 x^4+70 x^3+26 x^2+35 x+20$
- $y^2=6 x^6+72 x^5+47 x^4+52 x^3+54 x^2+13 x+67$
- $y^2=64 x^6+x^5+54 x^4+56 x^3+15 x+32$
- $y^2=15 x^6+75 x^5+61 x^4+44 x^3+13 x^2+8 x+32$
- $y^2=22 x^6+65 x^5+30 x^4+42 x^3+17 x^2+74 x+60$
- $y^2=14 x^6+8 x^5+14 x^4+68 x^3+51 x^2+18 x+58$
- $y^2=66 x^6+13 x^5+77 x^4+5 x^3+64 x^2+48 x+46$
- $y^2=20 x^6+20 x^5+25 x^4+18 x^3+55 x^2+2 x+36$
- $y^2=32 x^6+35 x^5+63 x^4+74 x^3+55$
- $y^2=36 x^6+19 x^5+35 x^4+12 x^3+35 x^2+19 x+36$
- $y^2=x^6+69 x^5+76 x^4+41 x^3+x+1$
- $y^2=66 x^6+2 x^5+30 x^4+3 x^3+57 x^2+72 x+43$
- $y^2=72 x^6+46 x^5+5 x^4+17 x^3+77 x^2+71 x+64$
- $y^2=55 x^6+57 x^5+66 x^4+17 x^3+69 x^2+25 x+26$
- $y^2=18 x^6+58 x^5+24 x^4+22 x^3+63 x^2+35 x+73$
- $y^2=20 x^6+60 x^5+61 x^3+25 x^2+40 x+34$
- $y^2=13 x^6+40 x^5+15 x^4+18 x^3+24 x^2+27 x+32$
- $y^2=32 x^6+26 x^5+76 x^4+55 x^3+24 x^2+69 x+62$
- $y^2=26 x^6+69 x^5+19 x^4+30 x^3+28 x^2+74 x+40$
- $y^2=53 x^6+50 x^5+62 x^4+22 x^3+62 x^2+50 x+53$
- and 302 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.e $\times$ 1.79.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.