Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 174 x^{2} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.427095739923$, $\pm0.572904260077$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{5}, \sqrt{-23})\) |
Galois group: | $C_2^2$ |
Jacobians: | $362$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9584$ | $91853056$ | $832972361456$ | $7835405165694976$ | $73742412678173806064$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $9758$ | $912674$ | $88506366$ | $8587340258$ | $832972717982$ | $80798284478114$ | $7837433685922558$ | $760231058654565218$ | $73742412666854786078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 362 curves (of which all are hyperelliptic):
- $y^2=4 x^6+62 x^5+37 x^4+41 x^3+32 x^2+28 x+14$
- $y^2=40 x^6+85 x^5+58 x^4+63 x^3+28 x^2+24 x+69$
- $y^2=6 x^6+37 x^5+96 x^4+24 x^3+43 x^2+23 x+54$
- $y^2=7 x^5+56 x^4+35 x^3+38 x^2+15 x+44$
- $y^2=35 x^5+86 x^4+78 x^3+93 x^2+75 x+26$
- $y^2=52 x^6+93 x^5+34 x^4+82 x^3+38 x^2+43 x+29$
- $y^2=66 x^6+77 x^5+73 x^4+22 x^3+93 x^2+21 x+48$
- $y^2=84 x^6+9 x^5+83 x^4+93 x^2+7 x+87$
- $y^2=32 x^6+45 x^5+27 x^4+77 x^2+35 x+47$
- $y^2=21 x^6+96 x^5+3 x^4+25 x^3+71 x^2+38 x+85$
- $y^2=8 x^6+92 x^5+15 x^4+28 x^3+64 x^2+93 x+37$
- $y^2=76 x^6+96 x^5+80 x^4+74 x^3+63 x^2+49 x+82$
- $y^2=89 x^6+92 x^5+12 x^4+79 x^3+24 x^2+51 x+22$
- $y^2=76 x^6+39 x^5+61 x^4+30 x^3+45 x^2+57 x+44$
- $y^2=89 x^6+x^5+14 x^4+53 x^3+31 x^2+91 x+26$
- $y^2=4 x^6+33 x^5+8 x^4+49 x^3+5 x^2+72 x+76$
- $y^2=96 x^6+29 x^5+69 x^4+75 x^3+44 x^2+91 x+63$
- $y^2=33 x^6+59 x^5+68 x^4+63 x^3+23 x^2+17 x+13$
- $y^2=68 x^6+4 x^5+49 x^4+24 x^3+18 x^2+85 x+65$
- $y^2=80 x^6+72 x^5+60 x^4+75 x^3+91 x^2+32 x+27$
- and 342 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{5}, \sqrt{-23})\). |
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.gs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-115}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.a_ags | $4$ | (not in LMFDB) |