| L(s) = 1 | − 3·5-s + 7-s + 6·11-s − 2·13-s − 12·17-s + 14·19-s − 3·23-s + 5·25-s + 6·29-s + 2·31-s − 3·35-s + 4·37-s + 2·43-s − 12·53-s − 18·55-s − 5·61-s + 6·65-s + 8·67-s + 6·71-s + 4·73-s + 6·77-s + 5·79-s − 12·83-s + 36·85-s − 2·91-s − 42·95-s − 2·97-s + ⋯ |
| L(s) = 1 | − 1.34·5-s + 0.377·7-s + 1.80·11-s − 0.554·13-s − 2.91·17-s + 3.21·19-s − 0.625·23-s + 25-s + 1.11·29-s + 0.359·31-s − 0.507·35-s + 0.657·37-s + 0.304·43-s − 1.64·53-s − 2.42·55-s − 0.640·61-s + 0.744·65-s + 0.977·67-s + 0.712·71-s + 0.468·73-s + 0.683·77-s + 0.562·79-s − 1.31·83-s + 3.90·85-s − 0.209·91-s − 4.30·95-s − 0.203·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.690079146\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.690079146\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.383126808480410077594299163292, −8.374203506294934692410051619554, −8.157009355248475792742284741318, −7.900083646337864072267200587299, −7.34642532321144877470488027067, −6.93494401502035205732516124128, −6.89384466156643867158957973411, −6.31459767718481154988040146181, −6.07175033094876052436970452198, −5.22078132431895077307511529352, −5.04125930076326715285816824818, −4.42231503339086593042553156349, −4.35764082976148223710878118128, −3.77975240139713523891249568697, −3.50402980389435609133345168730, −2.75735760847672058934669876033, −2.55299713738741700113025647450, −1.60510241191156399030294964624, −1.20092829442801032971968923783, −0.45477622755877449628922801115,
0.45477622755877449628922801115, 1.20092829442801032971968923783, 1.60510241191156399030294964624, 2.55299713738741700113025647450, 2.75735760847672058934669876033, 3.50402980389435609133345168730, 3.77975240139713523891249568697, 4.35764082976148223710878118128, 4.42231503339086593042553156349, 5.04125930076326715285816824818, 5.22078132431895077307511529352, 6.07175033094876052436970452198, 6.31459767718481154988040146181, 6.89384466156643867158957973411, 6.93494401502035205732516124128, 7.34642532321144877470488027067, 7.900083646337864072267200587299, 8.157009355248475792742284741318, 8.374203506294934692410051619554, 9.383126808480410077594299163292