| L(s) = 1 | − 6·5-s − 5·7-s − 6·11-s + 13-s + 3·17-s − 7·19-s − 18·23-s + 17·25-s + 3·29-s + 8·31-s + 30·35-s + 37-s + 3·41-s − 43-s + 18·49-s + 3·53-s + 36·55-s − 2·61-s − 6·65-s − 4·67-s + 24·71-s − 11·73-s + 30·77-s − 16·79-s + 9·83-s − 18·85-s + 3·89-s + ⋯ |
| L(s) = 1 | − 2.68·5-s − 1.88·7-s − 1.80·11-s + 0.277·13-s + 0.727·17-s − 1.60·19-s − 3.75·23-s + 17/5·25-s + 0.557·29-s + 1.43·31-s + 5.07·35-s + 0.164·37-s + 0.468·41-s − 0.152·43-s + 18/7·49-s + 0.412·53-s + 4.85·55-s − 0.256·61-s − 0.744·65-s − 0.488·67-s + 2.84·71-s − 1.28·73-s + 3.41·77-s − 1.80·79-s + 0.987·83-s − 1.95·85-s + 0.317·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.3535492229\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3535492229\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.517885854922948556694070336518, −8.314956312881759123224476564979, −8.174890139527913313774107040977, −7.974489177529554876701882570338, −7.41477524565974534704403796274, −7.23354629692893629091474083984, −6.69762086587224616322337897264, −6.21886383245703373889475541072, −5.92720732385006968741406965400, −5.70727236726681934865792631524, −4.83751325073459044826877946288, −4.43031001848698126545053107556, −3.99821846522307815142327887860, −3.97687565556806584445415874233, −3.24066762113550097094263412158, −3.15928926813210391127594788224, −2.42744002555340840886467671729, −2.05884008072415760072867498624, −0.52740392271826969054027773658, −0.37305863137397643257563003924,
0.37305863137397643257563003924, 0.52740392271826969054027773658, 2.05884008072415760072867498624, 2.42744002555340840886467671729, 3.15928926813210391127594788224, 3.24066762113550097094263412158, 3.97687565556806584445415874233, 3.99821846522307815142327887860, 4.43031001848698126545053107556, 4.83751325073459044826877946288, 5.70727236726681934865792631524, 5.92720732385006968741406965400, 6.21886383245703373889475541072, 6.69762086587224616322337897264, 7.23354629692893629091474083984, 7.41477524565974534704403796274, 7.974489177529554876701882570338, 8.174890139527913313774107040977, 8.314956312881759123224476564979, 8.517885854922948556694070336518