L(s) = 1 | − 5-s + 7-s + 6·11-s − 6·13-s + 4·17-s − 14·19-s + 23-s + 5·25-s + 2·29-s + 10·31-s − 35-s − 12·37-s − 8·41-s − 10·43-s − 8·47-s − 4·53-s − 6·55-s − 7·61-s + 6·65-s − 12·67-s + 30·71-s − 4·73-s + 6·77-s + 79-s − 12·83-s − 4·85-s − 8·89-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.377·7-s + 1.80·11-s − 1.66·13-s + 0.970·17-s − 3.21·19-s + 0.208·23-s + 25-s + 0.371·29-s + 1.79·31-s − 0.169·35-s − 1.97·37-s − 1.24·41-s − 1.52·43-s − 1.16·47-s − 0.549·53-s − 0.809·55-s − 0.896·61-s + 0.744·65-s − 1.46·67-s + 3.56·71-s − 0.468·73-s + 0.683·77-s + 0.112·79-s − 1.31·83-s − 0.433·85-s − 0.847·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.094909305\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.094909305\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.057419668867284908765189274790, −8.394341078148482039632588681074, −8.368125679376854296902623333501, −7.899244469002196295053075009512, −7.34248227780917714588148214628, −6.84859327435795601663532680916, −6.76306777771102506681160583921, −6.29553034593679976182946176817, −6.18291423990719461187328971672, −5.24508511591339556192165483470, −4.95445013880922349234186907689, −4.54093334784865517096649220205, −4.46798244111652836455618468523, −3.62812930360360602220357648486, −3.51892137085955809714400187014, −2.84670739736882128859618692850, −2.28364808588270751632386977879, −1.73197498306471140245138132329, −1.34285373450897641264155794461, −0.32894135743839250840486763275,
0.32894135743839250840486763275, 1.34285373450897641264155794461, 1.73197498306471140245138132329, 2.28364808588270751632386977879, 2.84670739736882128859618692850, 3.51892137085955809714400187014, 3.62812930360360602220357648486, 4.46798244111652836455618468523, 4.54093334784865517096649220205, 4.95445013880922349234186907689, 5.24508511591339556192165483470, 6.18291423990719461187328971672, 6.29553034593679976182946176817, 6.76306777771102506681160583921, 6.84859327435795601663532680916, 7.34248227780917714588148214628, 7.899244469002196295053075009512, 8.368125679376854296902623333501, 8.394341078148482039632588681074, 9.057419668867284908765189274790