| L(s) = 1 | + 2-s + 5-s − 8-s + 10-s − 2·11-s − 2·13-s − 16-s − 14·19-s − 2·22-s + 3·23-s + 5·25-s − 2·26-s − 8·29-s − 4·31-s − 12·37-s − 14·38-s − 40-s − 12·41-s + 8·43-s + 3·46-s − 8·47-s + 5·50-s − 8·53-s − 2·55-s − 8·58-s + 4·59-s − 13·61-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 0.447·5-s − 0.353·8-s + 0.316·10-s − 0.603·11-s − 0.554·13-s − 1/4·16-s − 3.21·19-s − 0.426·22-s + 0.625·23-s + 25-s − 0.392·26-s − 1.48·29-s − 0.718·31-s − 1.97·37-s − 2.27·38-s − 0.158·40-s − 1.87·41-s + 1.21·43-s + 0.442·46-s − 1.16·47-s + 0.707·50-s − 1.09·53-s − 0.269·55-s − 1.05·58-s + 0.520·59-s − 1.66·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7001316 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.632339367305196184732593963876, −8.420679483402568205018401144562, −7.918391762077813807299245896705, −7.50737071316690959530493670781, −6.87764194054143116205956771624, −6.79595314923919792670042746790, −6.37788466946222045803953153658, −5.92899531384411015140873258939, −5.39724301889777242303845425731, −5.19985936200252124144107672720, −4.75566634647335106699650992026, −4.34702921446122069556676595174, −3.91918896777548246665015648818, −3.44933026709040403705066430813, −2.87718553484940609256320982984, −2.50562984414926340719343611254, −1.72082807575796728045053229907, −1.70248342741047519259523539569, 0, 0,
1.70248342741047519259523539569, 1.72082807575796728045053229907, 2.50562984414926340719343611254, 2.87718553484940609256320982984, 3.44933026709040403705066430813, 3.91918896777548246665015648818, 4.34702921446122069556676595174, 4.75566634647335106699650992026, 5.19985936200252124144107672720, 5.39724301889777242303845425731, 5.92899531384411015140873258939, 6.37788466946222045803953153658, 6.79595314923919792670042746790, 6.87764194054143116205956771624, 7.50737071316690959530493670781, 7.918391762077813807299245896705, 8.420679483402568205018401144562, 8.632339367305196184732593963876