Properties

Label 2646.2.f.h.1765.1
Level $2646$
Weight $2$
Character 2646.1765
Analytic conductor $21.128$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(883,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,1,0,0,-2,0,2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1765.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1765
Dual form 2646.2.f.h.883.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.500000 - 0.866025i) q^{5} -1.00000 q^{8} +1.00000 q^{10} +(-1.00000 - 1.73205i) q^{11} +(-1.00000 + 1.73205i) q^{13} +(-0.500000 - 0.866025i) q^{16} -7.00000 q^{19} +(0.500000 + 0.866025i) q^{20} +(1.00000 - 1.73205i) q^{22} +(1.50000 - 2.59808i) q^{23} +(2.00000 + 3.46410i) q^{25} -2.00000 q^{26} +(-4.00000 - 6.92820i) q^{29} +(-2.00000 + 3.46410i) q^{31} +(0.500000 - 0.866025i) q^{32} -6.00000 q^{37} +(-3.50000 - 6.06218i) q^{38} +(-0.500000 + 0.866025i) q^{40} +(-6.00000 + 10.3923i) q^{41} +(4.00000 + 6.92820i) q^{43} +2.00000 q^{44} +3.00000 q^{46} +(-4.00000 - 6.92820i) q^{47} +(-2.00000 + 3.46410i) q^{50} +(-1.00000 - 1.73205i) q^{52} -4.00000 q^{53} -2.00000 q^{55} +(4.00000 - 6.92820i) q^{58} +(2.00000 - 3.46410i) q^{59} +(-6.50000 - 11.2583i) q^{61} -4.00000 q^{62} +1.00000 q^{64} +(1.00000 + 1.73205i) q^{65} +(1.00000 - 1.73205i) q^{67} +5.00000 q^{71} -14.0000 q^{73} +(-3.00000 - 5.19615i) q^{74} +(3.50000 - 6.06218i) q^{76} +(5.50000 + 9.52628i) q^{79} -1.00000 q^{80} -12.0000 q^{82} +(6.00000 + 10.3923i) q^{83} +(-4.00000 + 6.92820i) q^{86} +(1.00000 + 1.73205i) q^{88} -14.0000 q^{89} +(1.50000 + 2.59808i) q^{92} +(4.00000 - 6.92820i) q^{94} +(-3.50000 + 6.06218i) q^{95} +(1.00000 + 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + q^{5} - 2 q^{8} + 2 q^{10} - 2 q^{11} - 2 q^{13} - q^{16} - 14 q^{19} + q^{20} + 2 q^{22} + 3 q^{23} + 4 q^{25} - 4 q^{26} - 8 q^{29} - 4 q^{31} + q^{32} - 12 q^{37} - 7 q^{38}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.500000 0.866025i 0.223607 0.387298i −0.732294 0.680989i \(-0.761550\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) −1.00000 + 1.73205i −0.277350 + 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) 0 0
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) 1.50000 2.59808i 0.312772 0.541736i −0.666190 0.745782i \(-0.732076\pi\)
0.978961 + 0.204046i \(0.0654092\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 0 0
\(29\) −4.00000 6.92820i −0.742781 1.28654i −0.951224 0.308500i \(-0.900173\pi\)
0.208443 0.978035i \(-0.433160\pi\)
\(30\) 0 0
\(31\) −2.00000 + 3.46410i −0.359211 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) −3.50000 6.06218i −0.567775 0.983415i
\(39\) 0 0
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) −6.00000 + 10.3923i −0.937043 + 1.62301i −0.166092 + 0.986110i \(0.553115\pi\)
−0.770950 + 0.636895i \(0.780218\pi\)
\(42\) 0 0
\(43\) 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) −4.00000 6.92820i −0.583460 1.01058i −0.995066 0.0992202i \(-0.968365\pi\)
0.411606 0.911362i \(-0.364968\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.00000 + 3.46410i −0.282843 + 0.489898i
\(51\) 0 0
\(52\) −1.00000 1.73205i −0.138675 0.240192i
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 4.00000 6.92820i 0.525226 0.909718i
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 0 0
\(61\) −6.50000 11.2583i −0.832240 1.44148i −0.896258 0.443533i \(-0.853725\pi\)
0.0640184 0.997949i \(-0.479608\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.00000 + 1.73205i 0.124035 + 0.214834i
\(66\) 0 0
\(67\) 1.00000 1.73205i 0.122169 0.211604i −0.798454 0.602056i \(-0.794348\pi\)
0.920623 + 0.390453i \(0.127682\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) −3.00000 5.19615i −0.348743 0.604040i
\(75\) 0 0
\(76\) 3.50000 6.06218i 0.401478 0.695379i
\(77\) 0 0
\(78\) 0 0
\(79\) 5.50000 + 9.52628i 0.618798 + 1.07179i 0.989705 + 0.143120i \(0.0457135\pi\)
−0.370907 + 0.928670i \(0.620953\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) −12.0000 −1.32518
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 + 6.92820i −0.431331 + 0.747087i
\(87\) 0 0
\(88\) 1.00000 + 1.73205i 0.106600 + 0.184637i
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.50000 + 2.59808i 0.156386 + 0.270868i
\(93\) 0 0
\(94\) 4.00000 6.92820i 0.412568 0.714590i
\(95\) −3.50000 + 6.06218i −0.359092 + 0.621966i
\(96\) 0 0
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.00000 −0.400000
\(101\) −5.50000 9.52628i −0.547270 0.947900i −0.998460 0.0554722i \(-0.982334\pi\)
0.451190 0.892428i \(-0.351000\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) 1.00000 1.73205i 0.0980581 0.169842i
\(105\) 0 0
\(106\) −2.00000 3.46410i −0.194257 0.336463i
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) −1.00000 1.73205i −0.0953463 0.165145i
\(111\) 0 0
\(112\) 0 0
\(113\) −0.500000 + 0.866025i −0.0470360 + 0.0814688i −0.888585 0.458712i \(-0.848311\pi\)
0.841549 + 0.540181i \(0.181644\pi\)
\(114\) 0 0
\(115\) −1.50000 2.59808i −0.139876 0.242272i
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 6.50000 11.2583i 0.588482 1.01928i
\(123\) 0 0
\(124\) −2.00000 3.46410i −0.179605 0.311086i
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.00000 + 1.73205i −0.0877058 + 0.151911i
\(131\) 7.50000 12.9904i 0.655278 1.13497i −0.326546 0.945181i \(-0.605885\pi\)
0.981824 0.189794i \(-0.0607819\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 1.73205i −0.0854358 0.147979i 0.820141 0.572161i \(-0.193895\pi\)
−0.905577 + 0.424182i \(0.860562\pi\)
\(138\) 0 0
\(139\) −4.50000 + 7.79423i −0.381685 + 0.661098i −0.991303 0.131597i \(-0.957989\pi\)
0.609618 + 0.792695i \(0.291323\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.50000 + 4.33013i 0.209795 + 0.363376i
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) −7.00000 12.1244i −0.579324 1.00342i
\(147\) 0 0
\(148\) 3.00000 5.19615i 0.246598 0.427121i
\(149\) 5.00000 8.66025i 0.409616 0.709476i −0.585231 0.810867i \(-0.698996\pi\)
0.994847 + 0.101391i \(0.0323294\pi\)
\(150\) 0 0
\(151\) −9.50000 16.4545i −0.773099 1.33905i −0.935857 0.352381i \(-0.885372\pi\)
0.162758 0.986666i \(-0.447961\pi\)
\(152\) 7.00000 0.567775
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000 + 3.46410i 0.160644 + 0.278243i
\(156\) 0 0
\(157\) −5.50000 + 9.52628i −0.438948 + 0.760280i −0.997609 0.0691164i \(-0.977982\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) −5.50000 + 9.52628i −0.437557 + 0.757870i
\(159\) 0 0
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) 0 0
\(162\) 0 0
\(163\) −6.00000 −0.469956 −0.234978 0.972001i \(-0.575502\pi\)
−0.234978 + 0.972001i \(0.575502\pi\)
\(164\) −6.00000 10.3923i −0.468521 0.811503i
\(165\) 0 0
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) 1.00000 1.73205i 0.0773823 0.134030i −0.824737 0.565516i \(-0.808677\pi\)
0.902120 + 0.431486i \(0.142010\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −11.0000 19.0526i −0.836315 1.44854i −0.892956 0.450145i \(-0.851372\pi\)
0.0566411 0.998395i \(-0.481961\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 + 1.73205i −0.0753778 + 0.130558i
\(177\) 0 0
\(178\) −7.00000 12.1244i −0.524672 0.908759i
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.50000 + 2.59808i −0.110581 + 0.191533i
\(185\) −3.00000 + 5.19615i −0.220564 + 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) −7.00000 −0.507833
\(191\) 1.50000 + 2.59808i 0.108536 + 0.187990i 0.915177 0.403051i \(-0.132050\pi\)
−0.806641 + 0.591041i \(0.798717\pi\)
\(192\) 0 0
\(193\) −2.50000 + 4.33013i −0.179954 + 0.311689i −0.941865 0.335993i \(-0.890928\pi\)
0.761911 + 0.647682i \(0.224262\pi\)
\(194\) −1.00000 + 1.73205i −0.0717958 + 0.124354i
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) −2.00000 3.46410i −0.141421 0.244949i
\(201\) 0 0
\(202\) 5.50000 9.52628i 0.386979 0.670267i
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 + 10.3923i 0.419058 + 0.725830i
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 7.00000 + 12.1244i 0.484200 + 0.838659i
\(210\) 0 0
\(211\) 11.0000 19.0526i 0.757271 1.31163i −0.186966 0.982366i \(-0.559865\pi\)
0.944237 0.329266i \(-0.106801\pi\)
\(212\) 2.00000 3.46410i 0.137361 0.237915i
\(213\) 0 0
\(214\) −4.00000 6.92820i −0.273434 0.473602i
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 0 0
\(218\) 2.00000 + 3.46410i 0.135457 + 0.234619i
\(219\) 0 0
\(220\) 1.00000 1.73205i 0.0674200 0.116775i
\(221\) 0 0
\(222\) 0 0
\(223\) 1.00000 + 1.73205i 0.0669650 + 0.115987i 0.897564 0.440884i \(-0.145335\pi\)
−0.830599 + 0.556871i \(0.812002\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) 8.50000 + 14.7224i 0.564165 + 0.977162i 0.997127 + 0.0757500i \(0.0241351\pi\)
−0.432962 + 0.901412i \(0.642532\pi\)
\(228\) 0 0
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) 1.50000 2.59808i 0.0989071 0.171312i
\(231\) 0 0
\(232\) 4.00000 + 6.92820i 0.262613 + 0.454859i
\(233\) −1.00000 −0.0655122 −0.0327561 0.999463i \(-0.510428\pi\)
−0.0327561 + 0.999463i \(0.510428\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 2.00000 + 3.46410i 0.130189 + 0.225494i
\(237\) 0 0
\(238\) 0 0
\(239\) −7.50000 + 12.9904i −0.485135 + 0.840278i −0.999854 0.0170808i \(-0.994563\pi\)
0.514719 + 0.857359i \(0.327896\pi\)
\(240\) 0 0
\(241\) −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i \(-0.271048\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) 13.0000 0.832240
\(245\) 0 0
\(246\) 0 0
\(247\) 7.00000 12.1244i 0.445399 0.771454i
\(248\) 2.00000 3.46410i 0.127000 0.219971i
\(249\) 0 0
\(250\) 4.50000 + 7.79423i 0.284605 + 0.492950i
\(251\) −7.00000 −0.441836 −0.220918 0.975292i \(-0.570905\pi\)
−0.220918 + 0.975292i \(0.570905\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) −9.50000 16.4545i −0.596083 1.03245i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 4.00000 6.92820i 0.249513 0.432169i −0.713878 0.700270i \(-0.753063\pi\)
0.963391 + 0.268101i \(0.0863961\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2.00000 −0.124035
\(261\) 0 0
\(262\) 15.0000 0.926703
\(263\) 9.50000 + 16.4545i 0.585795 + 1.01463i 0.994776 + 0.102084i \(0.0325510\pi\)
−0.408981 + 0.912543i \(0.634116\pi\)
\(264\) 0 0
\(265\) −2.00000 + 3.46410i −0.122859 + 0.212798i
\(266\) 0 0
\(267\) 0 0
\(268\) 1.00000 + 1.73205i 0.0610847 + 0.105802i
\(269\) −7.00000 −0.426798 −0.213399 0.976965i \(-0.568453\pi\)
−0.213399 + 0.976965i \(0.568453\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 1.00000 1.73205i 0.0604122 0.104637i
\(275\) 4.00000 6.92820i 0.241209 0.417786i
\(276\) 0 0
\(277\) 1.00000 + 1.73205i 0.0600842 + 0.104069i 0.894503 0.447062i \(-0.147530\pi\)
−0.834419 + 0.551131i \(0.814196\pi\)
\(278\) −9.00000 −0.539784
\(279\) 0 0
\(280\) 0 0
\(281\) −7.50000 12.9904i −0.447412 0.774941i 0.550804 0.834634i \(-0.314321\pi\)
−0.998217 + 0.0596933i \(0.980988\pi\)
\(282\) 0 0
\(283\) −12.5000 + 21.6506i −0.743048 + 1.28700i 0.208053 + 0.978117i \(0.433287\pi\)
−0.951101 + 0.308879i \(0.900046\pi\)
\(284\) −2.50000 + 4.33013i −0.148348 + 0.256946i
\(285\) 0 0
\(286\) 2.00000 + 3.46410i 0.118262 + 0.204837i
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) −4.00000 6.92820i −0.234888 0.406838i
\(291\) 0 0
\(292\) 7.00000 12.1244i 0.409644 0.709524i
\(293\) 4.50000 7.79423i 0.262893 0.455344i −0.704117 0.710084i \(-0.748657\pi\)
0.967009 + 0.254741i \(0.0819901\pi\)
\(294\) 0 0
\(295\) −2.00000 3.46410i −0.116445 0.201688i
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 10.0000 0.579284
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 0 0
\(301\) 0 0
\(302\) 9.50000 16.4545i 0.546664 0.946849i
\(303\) 0 0
\(304\) 3.50000 + 6.06218i 0.200739 + 0.347690i
\(305\) −13.0000 −0.744378
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.00000 + 3.46410i −0.113592 + 0.196748i
\(311\) −5.00000 + 8.66025i −0.283524 + 0.491078i −0.972250 0.233944i \(-0.924837\pi\)
0.688726 + 0.725022i \(0.258170\pi\)
\(312\) 0 0
\(313\) −3.00000 5.19615i −0.169570 0.293704i 0.768699 0.639611i \(-0.220905\pi\)
−0.938269 + 0.345907i \(0.887571\pi\)
\(314\) −11.0000 −0.620766
\(315\) 0 0
\(316\) −11.0000 −0.618798
\(317\) 12.0000 + 20.7846i 0.673987 + 1.16738i 0.976764 + 0.214318i \(0.0687530\pi\)
−0.302777 + 0.953062i \(0.597914\pi\)
\(318\) 0 0
\(319\) −8.00000 + 13.8564i −0.447914 + 0.775810i
\(320\) 0.500000 0.866025i 0.0279508 0.0484123i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −8.00000 −0.443760
\(326\) −3.00000 5.19615i −0.166155 0.287788i
\(327\) 0 0
\(328\) 6.00000 10.3923i 0.331295 0.573819i
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 + 3.46410i 0.109930 + 0.190404i 0.915742 0.401768i \(-0.131604\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 2.00000 0.109435
\(335\) −1.00000 1.73205i −0.0546358 0.0946320i
\(336\) 0 0
\(337\) 11.0000 19.0526i 0.599208 1.03786i −0.393730 0.919226i \(-0.628816\pi\)
0.992938 0.118633i \(-0.0378512\pi\)
\(338\) −4.50000 + 7.79423i −0.244768 + 0.423950i
\(339\) 0 0
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) 0 0
\(344\) −4.00000 6.92820i −0.215666 0.373544i
\(345\) 0 0
\(346\) 11.0000 19.0526i 0.591364 1.02427i
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) 15.0000 + 25.9808i 0.802932 + 1.39072i 0.917679 + 0.397324i \(0.130061\pi\)
−0.114747 + 0.993395i \(0.536606\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 −0.106600
\(353\) 12.0000 + 20.7846i 0.638696 + 1.10625i 0.985719 + 0.168397i \(0.0538590\pi\)
−0.347024 + 0.937856i \(0.612808\pi\)
\(354\) 0 0
\(355\) 2.50000 4.33013i 0.132686 0.229819i
\(356\) 7.00000 12.1244i 0.370999 0.642590i
\(357\) 0 0
\(358\) 12.0000 + 20.7846i 0.634220 + 1.09850i
\(359\) −29.0000 −1.53056 −0.765281 0.643697i \(-0.777400\pi\)
−0.765281 + 0.643697i \(0.777400\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 3.50000 + 6.06218i 0.183956 + 0.318621i
\(363\) 0 0
\(364\) 0 0
\(365\) −7.00000 + 12.1244i −0.366397 + 0.634618i
\(366\) 0 0
\(367\) 16.0000 + 27.7128i 0.835193 + 1.44660i 0.893873 + 0.448320i \(0.147978\pi\)
−0.0586798 + 0.998277i \(0.518689\pi\)
\(368\) −3.00000 −0.156386
\(369\) 0 0
\(370\) −6.00000 −0.311925
\(371\) 0 0
\(372\) 0 0
\(373\) 16.0000 27.7128i 0.828449 1.43492i −0.0708063 0.997490i \(-0.522557\pi\)
0.899255 0.437425i \(-0.144109\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.00000 + 6.92820i 0.206284 + 0.357295i
\(377\) 16.0000 0.824042
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) −3.50000 6.06218i −0.179546 0.310983i
\(381\) 0 0
\(382\) −1.50000 + 2.59808i −0.0767467 + 0.132929i
\(383\) −3.00000 + 5.19615i −0.153293 + 0.265511i −0.932436 0.361335i \(-0.882321\pi\)
0.779143 + 0.626846i \(0.215654\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.00000 −0.254493
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) −15.0000 25.9808i −0.760530 1.31728i −0.942578 0.333987i \(-0.891606\pi\)
0.182047 0.983290i \(-0.441728\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 6.00000 + 10.3923i 0.302276 + 0.523557i
\(395\) 11.0000 0.553470
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) −7.00000 12.1244i −0.350878 0.607739i
\(399\) 0 0
\(400\) 2.00000 3.46410i 0.100000 0.173205i
\(401\) 1.50000 2.59808i 0.0749064 0.129742i −0.826139 0.563466i \(-0.809468\pi\)
0.901046 + 0.433724i \(0.142801\pi\)
\(402\) 0 0
\(403\) −4.00000 6.92820i −0.199254 0.345118i
\(404\) 11.0000 0.547270
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 + 10.3923i 0.297409 + 0.515127i
\(408\) 0 0
\(409\) 12.0000 20.7846i 0.593362 1.02773i −0.400414 0.916334i \(-0.631134\pi\)
0.993776 0.111398i \(-0.0355330\pi\)
\(410\) −6.00000 + 10.3923i −0.296319 + 0.513239i
\(411\) 0 0
\(412\) −4.00000 6.92820i −0.197066 0.341328i
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 1.00000 + 1.73205i 0.0490290 + 0.0849208i
\(417\) 0 0
\(418\) −7.00000 + 12.1244i −0.342381 + 0.593022i
\(419\) −2.50000 + 4.33013i −0.122133 + 0.211541i −0.920609 0.390487i \(-0.872307\pi\)
0.798476 + 0.602027i \(0.205640\pi\)
\(420\) 0 0
\(421\) 18.0000 + 31.1769i 0.877266 + 1.51947i 0.854329 + 0.519733i \(0.173969\pi\)
0.0229375 + 0.999737i \(0.492698\pi\)
\(422\) 22.0000 1.07094
\(423\) 0 0
\(424\) 4.00000 0.194257
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 4.00000 6.92820i 0.193347 0.334887i
\(429\) 0 0
\(430\) 4.00000 + 6.92820i 0.192897 + 0.334108i
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 0 0
\(433\) −28.0000 −1.34559 −0.672797 0.739827i \(-0.734907\pi\)
−0.672797 + 0.739827i \(0.734907\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.00000 + 3.46410i −0.0957826 + 0.165900i
\(437\) −10.5000 + 18.1865i −0.502283 + 0.869980i
\(438\) 0 0
\(439\) 18.0000 + 31.1769i 0.859093 + 1.48799i 0.872795 + 0.488087i \(0.162305\pi\)
−0.0137020 + 0.999906i \(0.504362\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 + 20.7846i 0.570137 + 0.987507i 0.996551 + 0.0829786i \(0.0264433\pi\)
−0.426414 + 0.904528i \(0.640223\pi\)
\(444\) 0 0
\(445\) −7.00000 + 12.1244i −0.331832 + 0.574750i
\(446\) −1.00000 + 1.73205i −0.0473514 + 0.0820150i
\(447\) 0 0
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) −0.500000 0.866025i −0.0235180 0.0407344i
\(453\) 0 0
\(454\) −8.50000 + 14.7224i −0.398925 + 0.690958i
\(455\) 0 0
\(456\) 0 0
\(457\) −8.50000 14.7224i −0.397613 0.688686i 0.595818 0.803120i \(-0.296828\pi\)
−0.993431 + 0.114433i \(0.963495\pi\)
\(458\) 13.0000 0.607450
\(459\) 0 0
\(460\) 3.00000 0.139876
\(461\) −4.50000 7.79423i −0.209586 0.363013i 0.741998 0.670402i \(-0.233878\pi\)
−0.951584 + 0.307388i \(0.900545\pi\)
\(462\) 0 0
\(463\) 0.500000 0.866025i 0.0232370 0.0402476i −0.854173 0.519989i \(-0.825936\pi\)
0.877410 + 0.479741i \(0.159269\pi\)
\(464\) −4.00000 + 6.92820i −0.185695 + 0.321634i
\(465\) 0 0
\(466\) −0.500000 0.866025i −0.0231621 0.0401179i
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −4.00000 6.92820i −0.184506 0.319574i
\(471\) 0 0
\(472\) −2.00000 + 3.46410i −0.0920575 + 0.159448i
\(473\) 8.00000 13.8564i 0.367840 0.637118i
\(474\) 0 0
\(475\) −14.0000 24.2487i −0.642364 1.11261i
\(476\) 0 0
\(477\) 0 0
\(478\) −15.0000 −0.686084
\(479\) 12.0000 + 20.7846i 0.548294 + 0.949673i 0.998392 + 0.0566937i \(0.0180558\pi\)
−0.450098 + 0.892979i \(0.648611\pi\)
\(480\) 0 0
\(481\) 6.00000 10.3923i 0.273576 0.473848i
\(482\) 5.00000 8.66025i 0.227744 0.394464i
\(483\) 0 0
\(484\) 3.50000 + 6.06218i 0.159091 + 0.275554i
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) 25.0000 1.13286 0.566429 0.824110i \(-0.308325\pi\)
0.566429 + 0.824110i \(0.308325\pi\)
\(488\) 6.50000 + 11.2583i 0.294241 + 0.509641i
\(489\) 0 0
\(490\) 0 0
\(491\) 3.00000 5.19615i 0.135388 0.234499i −0.790358 0.612646i \(-0.790105\pi\)
0.925746 + 0.378147i \(0.123439\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 14.0000 0.629890
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) −12.0000 + 20.7846i −0.537194 + 0.930447i 0.461860 + 0.886953i \(0.347182\pi\)
−0.999054 + 0.0434940i \(0.986151\pi\)
\(500\) −4.50000 + 7.79423i −0.201246 + 0.348569i
\(501\) 0 0
\(502\) −3.50000 6.06218i −0.156213 0.270568i
\(503\) −14.0000 −0.624229 −0.312115 0.950044i \(-0.601037\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(504\) 0 0
\(505\) −11.0000 −0.489494
\(506\) −3.00000 5.19615i −0.133366 0.230997i
\(507\) 0 0
\(508\) 9.50000 16.4545i 0.421494 0.730050i
\(509\) −17.0000 + 29.4449i −0.753512 + 1.30512i 0.192599 + 0.981278i \(0.438308\pi\)
−0.946111 + 0.323843i \(0.895025\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 8.00000 0.352865
\(515\) 4.00000 + 6.92820i 0.176261 + 0.305293i
\(516\) 0 0
\(517\) −8.00000 + 13.8564i −0.351840 + 0.609404i
\(518\) 0 0
\(519\) 0 0
\(520\) −1.00000 1.73205i −0.0438529 0.0759555i
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) 0 0
\(523\) 35.0000 1.53044 0.765222 0.643767i \(-0.222629\pi\)
0.765222 + 0.643767i \(0.222629\pi\)
\(524\) 7.50000 + 12.9904i 0.327639 + 0.567487i
\(525\) 0 0
\(526\) −9.50000 + 16.4545i −0.414220 + 0.717450i
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) −4.00000 −0.173749
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 20.7846i −0.519778 0.900281i
\(534\) 0 0
\(535\) −4.00000 + 6.92820i −0.172935 + 0.299532i
\(536\) −1.00000 + 1.73205i −0.0431934 + 0.0748132i
\(537\) 0 0
\(538\) −3.50000 6.06218i −0.150896 0.261359i
\(539\) 0 0
\(540\) 0 0
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 7.00000 + 12.1244i 0.300676 + 0.520786i
\(543\) 0 0
\(544\) 0 0
\(545\) 2.00000 3.46410i 0.0856706 0.148386i
\(546\) 0 0
\(547\) 4.00000 + 6.92820i 0.171028 + 0.296229i 0.938779 0.344519i \(-0.111958\pi\)
−0.767752 + 0.640747i \(0.778625\pi\)
\(548\) 2.00000 0.0854358
\(549\) 0 0
\(550\) 8.00000 0.341121
\(551\) 28.0000 + 48.4974i 1.19284 + 2.06606i
\(552\) 0 0
\(553\) 0 0
\(554\) −1.00000 + 1.73205i −0.0424859 + 0.0735878i
\(555\) 0 0
\(556\) −4.50000 7.79423i −0.190843 0.330549i
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 7.50000 12.9904i 0.316368 0.547966i
\(563\) 5.50000 9.52628i 0.231797 0.401485i −0.726540 0.687124i \(-0.758873\pi\)
0.958337 + 0.285640i \(0.0922060\pi\)
\(564\) 0 0
\(565\) 0.500000 + 0.866025i 0.0210352 + 0.0364340i
\(566\) −25.0000 −1.05083
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) −9.00000 15.5885i −0.377300 0.653502i 0.613369 0.789797i \(-0.289814\pi\)
−0.990668 + 0.136295i \(0.956481\pi\)
\(570\) 0 0
\(571\) −6.00000 + 10.3923i −0.251092 + 0.434904i −0.963827 0.266529i \(-0.914123\pi\)
0.712735 + 0.701434i \(0.247456\pi\)
\(572\) −2.00000 + 3.46410i −0.0836242 + 0.144841i
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 28.0000 1.16566 0.582828 0.812596i \(-0.301946\pi\)
0.582828 + 0.812596i \(0.301946\pi\)
\(578\) −8.50000 14.7224i −0.353553 0.612372i
\(579\) 0 0
\(580\) 4.00000 6.92820i 0.166091 0.287678i
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 + 6.92820i 0.165663 + 0.286937i
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) 9.00000 0.371787
\(587\) −11.5000 19.9186i −0.474656 0.822128i 0.524923 0.851150i \(-0.324094\pi\)
−0.999579 + 0.0290218i \(0.990761\pi\)
\(588\) 0 0
\(589\) 14.0000 24.2487i 0.576860 0.999151i
\(590\) 2.00000 3.46410i 0.0823387 0.142615i
\(591\) 0 0
\(592\) 3.00000 + 5.19615i 0.123299 + 0.213561i
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.00000 + 8.66025i 0.204808 + 0.354738i
\(597\) 0 0
\(598\) −3.00000 + 5.19615i −0.122679 + 0.212486i
\(599\) 6.00000 10.3923i 0.245153 0.424618i −0.717021 0.697051i \(-0.754495\pi\)
0.962175 + 0.272433i \(0.0878284\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 19.0000 0.773099
\(605\) −3.50000 6.06218i −0.142295 0.246463i
\(606\) 0 0
\(607\) 3.00000 5.19615i 0.121766 0.210905i −0.798698 0.601732i \(-0.794478\pi\)
0.920464 + 0.390827i \(0.127811\pi\)
\(608\) −3.50000 + 6.06218i −0.141944 + 0.245854i
\(609\) 0 0
\(610\) −6.50000 11.2583i −0.263177 0.455836i
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) 3.50000 + 6.06218i 0.141249 + 0.244650i
\(615\) 0 0
\(616\) 0 0
\(617\) −11.0000 + 19.0526i −0.442843 + 0.767027i −0.997899 0.0647859i \(-0.979364\pi\)
0.555056 + 0.831813i \(0.312697\pi\)
\(618\) 0 0
\(619\) 5.50000 + 9.52628i 0.221064 + 0.382893i 0.955131 0.296183i \(-0.0957138\pi\)
−0.734068 + 0.679076i \(0.762380\pi\)
\(620\) −4.00000 −0.160644
\(621\) 0 0
\(622\) −10.0000 −0.400963
\(623\) 0 0
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 3.00000 5.19615i 0.119904 0.207680i
\(627\) 0 0
\(628\) −5.50000 9.52628i −0.219474 0.380140i
\(629\) 0 0
\(630\) 0 0
\(631\) 9.00000 0.358284 0.179142 0.983823i \(-0.442668\pi\)
0.179142 + 0.983823i \(0.442668\pi\)
\(632\) −5.50000 9.52628i −0.218778 0.378935i
\(633\) 0 0
\(634\) −12.0000 + 20.7846i −0.476581 + 0.825462i
\(635\) −9.50000 + 16.4545i −0.376996 + 0.652976i
\(636\) 0 0
\(637\) 0 0
\(638\) −16.0000 −0.633446
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) 23.5000 + 40.7032i 0.928194 + 1.60768i 0.786342 + 0.617792i \(0.211973\pi\)
0.141852 + 0.989888i \(0.454694\pi\)
\(642\) 0 0
\(643\) 6.00000 10.3923i 0.236617 0.409832i −0.723124 0.690718i \(-0.757295\pi\)
0.959741 + 0.280885i \(0.0906280\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 42.0000 1.65119 0.825595 0.564263i \(-0.190840\pi\)
0.825595 + 0.564263i \(0.190840\pi\)
\(648\) 0 0
\(649\) −8.00000 −0.314027
\(650\) −4.00000 6.92820i −0.156893 0.271746i
\(651\) 0 0
\(652\) 3.00000 5.19615i 0.117489 0.203497i
\(653\) −16.0000 + 27.7128i −0.626128 + 1.08449i 0.362193 + 0.932103i \(0.382028\pi\)
−0.988322 + 0.152383i \(0.951305\pi\)
\(654\) 0 0
\(655\) −7.50000 12.9904i −0.293049 0.507576i
\(656\) 12.0000 0.468521
\(657\) 0 0
\(658\) 0 0
\(659\) 10.0000 + 17.3205i 0.389545 + 0.674711i 0.992388 0.123148i \(-0.0392990\pi\)
−0.602844 + 0.797859i \(0.705966\pi\)
\(660\) 0 0
\(661\) 15.5000 26.8468i 0.602880 1.04422i −0.389503 0.921025i \(-0.627353\pi\)
0.992383 0.123194i \(-0.0393136\pi\)
\(662\) −2.00000 + 3.46410i −0.0777322 + 0.134636i
\(663\) 0 0
\(664\) −6.00000 10.3923i −0.232845 0.403300i
\(665\) 0 0
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 1.00000 + 1.73205i 0.0386912 + 0.0670151i
\(669\) 0 0
\(670\) 1.00000 1.73205i 0.0386334 0.0669150i
\(671\) −13.0000 + 22.5167i −0.501859 + 0.869246i
\(672\) 0 0
\(673\) 0.500000 + 0.866025i 0.0192736 + 0.0333828i 0.875501 0.483216i \(-0.160531\pi\)
−0.856228 + 0.516599i \(0.827198\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 3.00000 + 5.19615i 0.115299 + 0.199704i 0.917899 0.396813i \(-0.129884\pi\)
−0.802600 + 0.596518i \(0.796551\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 4.00000 + 6.92820i 0.153168 + 0.265295i
\(683\) 10.0000 0.382639 0.191320 0.981528i \(-0.438723\pi\)
0.191320 + 0.981528i \(0.438723\pi\)
\(684\) 0 0
\(685\) −2.00000 −0.0764161
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) 4.00000 6.92820i 0.152388 0.263944i
\(690\) 0 0
\(691\) 14.5000 + 25.1147i 0.551606 + 0.955410i 0.998159 + 0.0606524i \(0.0193181\pi\)
−0.446553 + 0.894757i \(0.647349\pi\)
\(692\) 22.0000 0.836315
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 4.50000 + 7.79423i 0.170695 + 0.295652i
\(696\) 0 0
\(697\) 0 0
\(698\) −15.0000 + 25.9808i −0.567758 + 0.983386i
\(699\) 0 0
\(700\) 0 0
\(701\) −2.00000 −0.0755390 −0.0377695 0.999286i \(-0.512025\pi\)
−0.0377695 + 0.999286i \(0.512025\pi\)
\(702\) 0 0
\(703\) 42.0000 1.58406
\(704\) −1.00000 1.73205i −0.0376889 0.0652791i
\(705\) 0 0
\(706\) −12.0000 + 20.7846i −0.451626 + 0.782239i
\(707\) 0 0
\(708\) 0 0
\(709\) 16.0000 + 27.7128i 0.600893 + 1.04078i 0.992686 + 0.120723i \(0.0385214\pi\)
−0.391794 + 0.920053i \(0.628145\pi\)
\(710\) 5.00000 0.187647
\(711\) 0 0
\(712\) 14.0000 0.524672
\(713\) 6.00000 + 10.3923i 0.224702 + 0.389195i
\(714\) 0 0
\(715\) 2.00000 3.46410i 0.0747958 0.129550i
\(716\) −12.0000 + 20.7846i −0.448461 + 0.776757i
\(717\) 0 0
\(718\) −14.5000 25.1147i −0.541135 0.937274i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 15.0000 + 25.9808i 0.558242 + 0.966904i
\(723\) 0 0
\(724\) −3.50000 + 6.06218i −0.130076 + 0.225299i
\(725\) 16.0000 27.7128i 0.594225 1.02923i
\(726\) 0 0
\(727\) −13.0000 22.5167i −0.482143 0.835097i 0.517647 0.855595i \(-0.326808\pi\)
−0.999790 + 0.0204978i \(0.993475\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −14.0000 −0.518163
\(731\) 0 0
\(732\) 0 0
\(733\) −0.500000 + 0.866025i −0.0184679 + 0.0319874i −0.875112 0.483921i \(-0.839212\pi\)
0.856644 + 0.515908i \(0.172546\pi\)
\(734\) −16.0000 + 27.7128i −0.590571 + 1.02290i
\(735\) 0 0
\(736\) −1.50000 2.59808i −0.0552907 0.0957664i
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) −38.0000 −1.39785 −0.698926 0.715194i \(-0.746338\pi\)
−0.698926 + 0.715194i \(0.746338\pi\)
\(740\) −3.00000 5.19615i −0.110282 0.191014i
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 41.5692i 0.880475 1.52503i 0.0296605 0.999560i \(-0.490557\pi\)
0.850814 0.525467i \(-0.176109\pi\)
\(744\) 0 0
\(745\) −5.00000 8.66025i −0.183186 0.317287i
\(746\) 32.0000 1.17160
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 19.5000 33.7750i 0.711565 1.23247i −0.252704 0.967544i \(-0.581320\pi\)
0.964269 0.264923i \(-0.0853467\pi\)
\(752\) −4.00000 + 6.92820i −0.145865 + 0.252646i
\(753\) 0 0
\(754\) 8.00000 + 13.8564i 0.291343 + 0.504621i
\(755\) −19.0000 −0.691481
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) −6.00000 10.3923i −0.217930 0.377466i
\(759\) 0 0
\(760\) 3.50000 6.06218i 0.126958 0.219898i
\(761\) −10.0000 + 17.3205i −0.362500 + 0.627868i −0.988372 0.152058i \(-0.951410\pi\)
0.625872 + 0.779926i \(0.284743\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −3.00000 −0.108536
\(765\) 0 0
\(766\) −6.00000 −0.216789
\(767\) 4.00000 + 6.92820i 0.144432 + 0.250163i
\(768\) 0 0
\(769\) −1.00000 + 1.73205i −0.0360609 + 0.0624593i −0.883493 0.468445i \(-0.844814\pi\)
0.847432 + 0.530904i \(0.178148\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.50000 4.33013i −0.0899770 0.155845i
\(773\) −21.0000 −0.755318 −0.377659 0.925945i \(-0.623271\pi\)
−0.377659 + 0.925945i \(0.623271\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) −1.00000 1.73205i −0.0358979 0.0621770i
\(777\) 0 0
\(778\) 15.0000 25.9808i 0.537776 0.931455i
\(779\) 42.0000 72.7461i 1.50481 2.60640i
\(780\) 0 0
\(781\) −5.00000 8.66025i −0.178914 0.309888i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.50000 + 9.52628i 0.196303 + 0.340007i
\(786\) 0 0
\(787\) −2.00000 + 3.46410i −0.0712923 + 0.123482i −0.899468 0.436987i \(-0.856046\pi\)
0.828176 + 0.560469i \(0.189379\pi\)
\(788\) −6.00000 + 10.3923i −0.213741 + 0.370211i
\(789\) 0 0
\(790\) 5.50000 + 9.52628i 0.195681 + 0.338930i
\(791\) 0 0
\(792\) 0 0
\(793\) 26.0000 0.923287
\(794\) 7.00000 + 12.1244i 0.248421 + 0.430277i
\(795\) 0 0
\(796\) 7.00000 12.1244i 0.248108 0.429736i
\(797\) 25.5000 44.1673i 0.903256 1.56449i 0.0800155 0.996794i \(-0.474503\pi\)
0.823241 0.567692i \(-0.192164\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) 3.00000 0.105934
\(803\) 14.0000 + 24.2487i 0.494049 + 0.855718i
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 6.92820i 0.140894 0.244036i
\(807\) 0 0
\(808\) 5.50000 + 9.52628i 0.193489 + 0.335133i
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −6.00000 + 10.3923i −0.210300 + 0.364250i
\(815\) −3.00000 + 5.19615i −0.105085 + 0.182013i
\(816\) 0 0
\(817\) −28.0000 48.4974i −0.979596 1.69671i
\(818\) 24.0000 0.839140
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) −16.0000 27.7128i −0.558404 0.967184i −0.997630 0.0688073i \(-0.978081\pi\)
0.439226 0.898377i \(-0.355253\pi\)
\(822\) 0 0
\(823\) 22.0000 38.1051i 0.766872 1.32826i −0.172379 0.985031i \(-0.555146\pi\)
0.939251 0.343230i \(-0.111521\pi\)
\(824\) 4.00000 6.92820i 0.139347 0.241355i
\(825\) 0 0
\(826\) 0 0
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 6.00000 + 10.3923i 0.208263 + 0.360722i
\(831\) 0 0
\(832\) −1.00000 + 1.73205i −0.0346688 + 0.0600481i
\(833\) 0 0
\(834\) 0 0
\(835\) −1.00000 1.73205i −0.0346064 0.0599401i
\(836\) −14.0000 −0.484200
\(837\) 0 0
\(838\) −5.00000 −0.172722
\(839\) −15.0000 25.9808i −0.517858 0.896956i −0.999785 0.0207443i \(-0.993396\pi\)
0.481927 0.876211i \(-0.339937\pi\)
\(840\) 0 0
\(841\) −17.5000 + 30.3109i −0.603448 + 1.04520i
\(842\) −18.0000 + 31.1769i −0.620321 + 1.07443i
\(843\) 0 0
\(844\) 11.0000 + 19.0526i 0.378636 + 0.655816i
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) 2.00000 + 3.46410i 0.0686803 + 0.118958i
\(849\) 0 0
\(850\) 0 0
\(851\) −9.00000 + 15.5885i −0.308516 + 0.534365i
\(852\) 0 0
\(853\) 18.5000 + 32.0429i 0.633428 + 1.09713i 0.986846 + 0.161664i \(0.0516860\pi\)
−0.353418 + 0.935466i \(0.614981\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) −9.00000 15.5885i −0.307434 0.532492i 0.670366 0.742030i \(-0.266137\pi\)
−0.977800 + 0.209539i \(0.932804\pi\)
\(858\) 0 0
\(859\) −18.0000 + 31.1769i −0.614152 + 1.06374i 0.376381 + 0.926465i \(0.377169\pi\)
−0.990533 + 0.137277i \(0.956165\pi\)
\(860\) −4.00000 + 6.92820i −0.136399 + 0.236250i
\(861\) 0 0
\(862\) −16.0000 27.7128i −0.544962 0.943902i
\(863\) −57.0000 −1.94030 −0.970151 0.242500i \(-0.922032\pi\)
−0.970151 + 0.242500i \(0.922032\pi\)
\(864\) 0 0
\(865\) −22.0000 −0.748022
\(866\) −14.0000 24.2487i −0.475739 0.824005i
\(867\) 0 0
\(868\) 0 0
\(869\) 11.0000 19.0526i 0.373149 0.646314i
\(870\) 0 0
\(871\) 2.00000 + 3.46410i 0.0677674 + 0.117377i
\(872\) −4.00000 −0.135457
\(873\) 0 0
\(874\) −21.0000 −0.710336
\(875\) 0 0
\(876\) 0 0
\(877\) −12.0000 + 20.7846i −0.405211 + 0.701846i −0.994346 0.106188i \(-0.966135\pi\)
0.589135 + 0.808035i \(0.299469\pi\)
\(878\) −18.0000 + 31.1769i −0.607471 + 1.05217i
\(879\) 0 0
\(880\) 1.00000 + 1.73205i 0.0337100 + 0.0583874i
\(881\) −28.0000 −0.943344 −0.471672 0.881774i \(-0.656349\pi\)
−0.471672 + 0.881774i \(0.656349\pi\)
\(882\) 0 0
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −12.0000 + 20.7846i −0.403148 + 0.698273i
\(887\) 18.0000 31.1769i 0.604381 1.04682i −0.387768 0.921757i \(-0.626754\pi\)
0.992149 0.125061i \(-0.0399128\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −14.0000 −0.469281
\(891\) 0 0
\(892\) −2.00000 −0.0669650
\(893\) 28.0000 + 48.4974i 0.936984 + 1.62290i
\(894\) 0 0
\(895\) 12.0000 20.7846i 0.401116 0.694753i
\(896\) 0 0
\(897\) 0 0
\(898\) −4.50000 7.79423i −0.150167 0.260097i
\(899\) 32.0000 1.06726
\(900\) 0 0
\(901\) 0 0
\(902\) 12.0000 + 20.7846i 0.399556 + 0.692052i
\(903\) 0 0
\(904\) 0.500000 0.866025i 0.0166298 0.0288036i
\(905\) 3.50000 6.06218i 0.116344 0.201514i
\(906\) 0 0
\(907\) 1.00000 + 1.73205i 0.0332045 + 0.0575118i 0.882150 0.470968i \(-0.156095\pi\)
−0.848946 + 0.528480i \(0.822762\pi\)
\(908\) −17.0000 −0.564165
\(909\) 0 0
\(910\) 0 0
\(911\) −0.500000 0.866025i −0.0165657 0.0286927i 0.857624 0.514278i \(-0.171940\pi\)
−0.874189 + 0.485585i \(0.838607\pi\)
\(912\) 0 0
\(913\) 12.0000 20.7846i 0.397142 0.687870i
\(914\) 8.50000 14.7224i 0.281155 0.486975i
\(915\) 0 0
\(916\) 6.50000 + 11.2583i 0.214766 + 0.371986i
\(917\) 0 0
\(918\) 0 0
\(919\) 15.0000 0.494804 0.247402 0.968913i \(-0.420423\pi\)
0.247402 + 0.968913i \(0.420423\pi\)
\(920\) 1.50000 + 2.59808i 0.0494535 + 0.0856560i
\(921\) 0 0
\(922\) 4.50000 7.79423i 0.148200 0.256689i
\(923\) −5.00000 + 8.66025i −0.164577 + 0.285056i
\(924\) 0 0
\(925\) −12.0000 20.7846i −0.394558 0.683394i
\(926\) 1.00000 0.0328620
\(927\) 0 0
\(928\) −8.00000 −0.262613
\(929\) 3.00000 + 5.19615i 0.0984268 + 0.170480i 0.911034 0.412332i \(-0.135286\pi\)
−0.812607 + 0.582812i \(0.801952\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.500000 0.866025i 0.0163780 0.0283676i
\(933\) 0 0
\(934\) 14.0000 + 24.2487i 0.458094 + 0.793442i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4.00000 6.92820i 0.130466 0.225973i
\(941\) −1.50000 + 2.59808i −0.0488986 + 0.0846949i −0.889439 0.457054i \(-0.848904\pi\)
0.840540 + 0.541749i \(0.182238\pi\)
\(942\) 0 0
\(943\) 18.0000 + 31.1769i 0.586161 + 1.01526i
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) 5.00000 + 8.66025i 0.162478 + 0.281420i 0.935757 0.352646i \(-0.114718\pi\)
−0.773279 + 0.634066i \(0.781385\pi\)
\(948\) 0 0
\(949\) 14.0000 24.2487i 0.454459 0.787146i
\(950\) 14.0000 24.2487i 0.454220 0.786732i
\(951\) 0 0
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) 3.00000 0.0970777
\(956\) −7.50000 12.9904i −0.242567 0.420139i
\(957\) 0 0
\(958\) −12.0000 + 20.7846i −0.387702 + 0.671520i
\(959\) 0 0
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) 12.0000 0.386896
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) 2.50000 + 4.33013i 0.0804778 + 0.139392i
\(966\) 0 0
\(967\) −6.50000 + 11.2583i −0.209026 + 0.362043i −0.951408 0.307933i \(-0.900363\pi\)
0.742382 + 0.669977i \(0.233696\pi\)
\(968\) −3.50000 + 6.06218i −0.112494 + 0.194846i
\(969\) 0 0
\(970\) 1.00000 + 1.73205i 0.0321081 + 0.0556128i
\(971\) 35.0000 1.12320 0.561602 0.827408i \(-0.310185\pi\)
0.561602 + 0.827408i \(0.310185\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 12.5000 + 21.6506i 0.400526 + 0.693731i
\(975\) 0 0
\(976\) −6.50000 + 11.2583i −0.208060 + 0.360370i
\(977\) −1.00000 + 1.73205i −0.0319928 + 0.0554132i −0.881579 0.472037i \(-0.843519\pi\)
0.849586 + 0.527451i \(0.176852\pi\)
\(978\) 0 0
\(979\) 14.0000 + 24.2487i 0.447442 + 0.774992i
\(980\) 0 0
\(981\) 0 0
\(982\) 6.00000 0.191468
\(983\) −16.0000 27.7128i −0.510321 0.883901i −0.999928 0.0119587i \(-0.996193\pi\)
0.489608 0.871943i \(-0.337140\pi\)
\(984\) 0 0
\(985\) 6.00000 10.3923i 0.191176 0.331126i
\(986\) 0 0
\(987\) 0 0
\(988\) 7.00000 + 12.1244i 0.222700 + 0.385727i
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 2.00000 + 3.46410i 0.0635001 + 0.109985i
\(993\) 0 0
\(994\) 0 0
\(995\) −7.00000 + 12.1244i −0.221915 + 0.384368i
\(996\) 0 0
\(997\) −8.50000 14.7224i −0.269198 0.466264i 0.699457 0.714675i \(-0.253425\pi\)
−0.968655 + 0.248410i \(0.920092\pi\)
\(998\) −24.0000 −0.759707
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.f.h.1765.1 2
3.2 odd 2 882.2.f.b.589.1 yes 2
7.2 even 3 2646.2.h.g.361.1 2
7.3 odd 6 2646.2.e.a.1549.1 2
7.4 even 3 2646.2.e.d.1549.1 2
7.5 odd 6 2646.2.h.j.361.1 2
7.6 odd 2 2646.2.f.f.1765.1 2
9.2 odd 6 882.2.f.b.295.1 2
9.4 even 3 7938.2.a.f.1.1 1
9.5 odd 6 7938.2.a.ba.1.1 1
9.7 even 3 inner 2646.2.f.h.883.1 2
21.2 odd 6 882.2.h.d.67.1 2
21.5 even 6 882.2.h.a.67.1 2
21.11 odd 6 882.2.e.f.373.1 2
21.17 even 6 882.2.e.j.373.1 2
21.20 even 2 882.2.f.c.589.1 yes 2
63.2 odd 6 882.2.e.f.655.1 2
63.11 odd 6 882.2.h.d.79.1 2
63.13 odd 6 7938.2.a.k.1.1 1
63.16 even 3 2646.2.e.d.2125.1 2
63.20 even 6 882.2.f.c.295.1 yes 2
63.25 even 3 2646.2.h.g.667.1 2
63.34 odd 6 2646.2.f.f.883.1 2
63.38 even 6 882.2.h.a.79.1 2
63.41 even 6 7938.2.a.v.1.1 1
63.47 even 6 882.2.e.j.655.1 2
63.52 odd 6 2646.2.h.j.667.1 2
63.61 odd 6 2646.2.e.a.2125.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.f.373.1 2 21.11 odd 6
882.2.e.f.655.1 2 63.2 odd 6
882.2.e.j.373.1 2 21.17 even 6
882.2.e.j.655.1 2 63.47 even 6
882.2.f.b.295.1 2 9.2 odd 6
882.2.f.b.589.1 yes 2 3.2 odd 2
882.2.f.c.295.1 yes 2 63.20 even 6
882.2.f.c.589.1 yes 2 21.20 even 2
882.2.h.a.67.1 2 21.5 even 6
882.2.h.a.79.1 2 63.38 even 6
882.2.h.d.67.1 2 21.2 odd 6
882.2.h.d.79.1 2 63.11 odd 6
2646.2.e.a.1549.1 2 7.3 odd 6
2646.2.e.a.2125.1 2 63.61 odd 6
2646.2.e.d.1549.1 2 7.4 even 3
2646.2.e.d.2125.1 2 63.16 even 3
2646.2.f.f.883.1 2 63.34 odd 6
2646.2.f.f.1765.1 2 7.6 odd 2
2646.2.f.h.883.1 2 9.7 even 3 inner
2646.2.f.h.1765.1 2 1.1 even 1 trivial
2646.2.h.g.361.1 2 7.2 even 3
2646.2.h.g.667.1 2 63.25 even 3
2646.2.h.j.361.1 2 7.5 odd 6
2646.2.h.j.667.1 2 63.52 odd 6
7938.2.a.f.1.1 1 9.4 even 3
7938.2.a.k.1.1 1 63.13 odd 6
7938.2.a.v.1.1 1 63.41 even 6
7938.2.a.ba.1.1 1 9.5 odd 6