Properties

Label 882.2.h.a.67.1
Level $882$
Weight $2$
Character 882.67
Analytic conductor $7.043$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(67,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,-3,-1,-2,3,0,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 882.67
Dual form 882.2.h.a.79.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.00000 q^{5} +(1.50000 - 0.866025i) q^{6} +1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(0.500000 - 0.866025i) q^{10} -2.00000 q^{11} +1.73205i q^{12} +(1.00000 - 1.73205i) q^{13} +(1.50000 + 0.866025i) q^{15} +(-0.500000 + 0.866025i) q^{16} -3.00000 q^{18} +(-3.50000 - 6.06218i) q^{19} +(0.500000 + 0.866025i) q^{20} +(1.00000 - 1.73205i) q^{22} +3.00000 q^{23} +(-1.50000 - 0.866025i) q^{24} -4.00000 q^{25} +(1.00000 + 1.73205i) q^{26} -5.19615i q^{27} +(4.00000 + 6.92820i) q^{29} +(-1.50000 + 0.866025i) q^{30} +(2.00000 + 3.46410i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(3.00000 + 1.73205i) q^{33} +(1.50000 - 2.59808i) q^{36} +(3.00000 + 5.19615i) q^{37} +7.00000 q^{38} +(-3.00000 + 1.73205i) q^{39} -1.00000 q^{40} +(-6.00000 + 10.3923i) q^{41} +(4.00000 + 6.92820i) q^{43} +(1.00000 + 1.73205i) q^{44} +(-1.50000 - 2.59808i) q^{45} +(-1.50000 + 2.59808i) q^{46} +(-4.00000 + 6.92820i) q^{47} +(1.50000 - 0.866025i) q^{48} +(2.00000 - 3.46410i) q^{50} -2.00000 q^{52} +(-2.00000 + 3.46410i) q^{53} +(4.50000 + 2.59808i) q^{54} +2.00000 q^{55} +12.1244i q^{57} -8.00000 q^{58} +(2.00000 + 3.46410i) q^{59} -1.73205i q^{60} +(6.50000 - 11.2583i) q^{61} -4.00000 q^{62} +1.00000 q^{64} +(-1.00000 + 1.73205i) q^{65} +(-3.00000 + 1.73205i) q^{66} +(1.00000 + 1.73205i) q^{67} +(-4.50000 - 2.59808i) q^{69} -5.00000 q^{71} +(1.50000 + 2.59808i) q^{72} +(-7.00000 + 12.1244i) q^{73} -6.00000 q^{74} +(6.00000 + 3.46410i) q^{75} +(-3.50000 + 6.06218i) q^{76} -3.46410i q^{78} +(5.50000 - 9.52628i) q^{79} +(0.500000 - 0.866025i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(-6.00000 - 10.3923i) q^{82} +(6.00000 + 10.3923i) q^{83} -8.00000 q^{86} -13.8564i q^{87} -2.00000 q^{88} +(7.00000 + 12.1244i) q^{89} +3.00000 q^{90} +(-1.50000 - 2.59808i) q^{92} -6.92820i q^{93} +(-4.00000 - 6.92820i) q^{94} +(3.50000 + 6.06218i) q^{95} +1.73205i q^{96} +(-1.00000 - 1.73205i) q^{97} +(-3.00000 - 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 3 q^{3} - q^{4} - 2 q^{5} + 3 q^{6} + 2 q^{8} + 3 q^{9} + q^{10} - 4 q^{11} + 2 q^{13} + 3 q^{15} - q^{16} - 6 q^{18} - 7 q^{19} + q^{20} + 2 q^{22} + 6 q^{23} - 3 q^{24} - 8 q^{25} + 2 q^{26}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.50000 0.866025i −0.866025 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 1.50000 0.866025i 0.612372 0.353553i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 1.73205i 0.500000i
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) 0 0
\(15\) 1.50000 + 0.866025i 0.387298 + 0.223607i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) −3.00000 −0.707107
\(19\) −3.50000 6.06218i −0.802955 1.39076i −0.917663 0.397360i \(-0.869927\pi\)
0.114708 0.993399i \(-0.463407\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) 0 0
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) −1.50000 0.866025i −0.306186 0.176777i
\(25\) −4.00000 −0.800000
\(26\) 1.00000 + 1.73205i 0.196116 + 0.339683i
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 4.00000 + 6.92820i 0.742781 + 1.28654i 0.951224 + 0.308500i \(0.0998271\pi\)
−0.208443 + 0.978035i \(0.566840\pi\)
\(30\) −1.50000 + 0.866025i −0.273861 + 0.158114i
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 3.00000 + 1.73205i 0.522233 + 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) 3.00000 + 5.19615i 0.493197 + 0.854242i 0.999969 0.00783774i \(-0.00249486\pi\)
−0.506772 + 0.862080i \(0.669162\pi\)
\(38\) 7.00000 1.13555
\(39\) −3.00000 + 1.73205i −0.480384 + 0.277350i
\(40\) −1.00000 −0.158114
\(41\) −6.00000 + 10.3923i −0.937043 + 1.62301i −0.166092 + 0.986110i \(0.553115\pi\)
−0.770950 + 0.636895i \(0.780218\pi\)
\(42\) 0 0
\(43\) 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 1.00000 + 1.73205i 0.150756 + 0.261116i
\(45\) −1.50000 2.59808i −0.223607 0.387298i
\(46\) −1.50000 + 2.59808i −0.221163 + 0.383065i
\(47\) −4.00000 + 6.92820i −0.583460 + 1.01058i 0.411606 + 0.911362i \(0.364968\pi\)
−0.995066 + 0.0992202i \(0.968365\pi\)
\(48\) 1.50000 0.866025i 0.216506 0.125000i
\(49\) 0 0
\(50\) 2.00000 3.46410i 0.282843 0.489898i
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) −2.00000 + 3.46410i −0.274721 + 0.475831i −0.970065 0.242846i \(-0.921919\pi\)
0.695344 + 0.718677i \(0.255252\pi\)
\(54\) 4.50000 + 2.59808i 0.612372 + 0.353553i
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 12.1244i 1.60591i
\(58\) −8.00000 −1.05045
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 1.73205i 0.223607i
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.00000 + 1.73205i −0.124035 + 0.214834i
\(66\) −3.00000 + 1.73205i −0.369274 + 0.213201i
\(67\) 1.00000 + 1.73205i 0.122169 + 0.211604i 0.920623 0.390453i \(-0.127682\pi\)
−0.798454 + 0.602056i \(0.794348\pi\)
\(68\) 0 0
\(69\) −4.50000 2.59808i −0.541736 0.312772i
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 1.50000 + 2.59808i 0.176777 + 0.306186i
\(73\) −7.00000 + 12.1244i −0.819288 + 1.41905i 0.0869195 + 0.996215i \(0.472298\pi\)
−0.906208 + 0.422833i \(0.861036\pi\)
\(74\) −6.00000 −0.697486
\(75\) 6.00000 + 3.46410i 0.692820 + 0.400000i
\(76\) −3.50000 + 6.06218i −0.401478 + 0.695379i
\(77\) 0 0
\(78\) 3.46410i 0.392232i
\(79\) 5.50000 9.52628i 0.618798 1.07179i −0.370907 0.928670i \(-0.620953\pi\)
0.989705 0.143120i \(-0.0457135\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −6.00000 10.3923i −0.662589 1.14764i
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) 13.8564i 1.48556i
\(88\) −2.00000 −0.213201
\(89\) 7.00000 + 12.1244i 0.741999 + 1.28518i 0.951584 + 0.307389i \(0.0994552\pi\)
−0.209585 + 0.977790i \(0.567211\pi\)
\(90\) 3.00000 0.316228
\(91\) 0 0
\(92\) −1.50000 2.59808i −0.156386 0.270868i
\(93\) 6.92820i 0.718421i
\(94\) −4.00000 6.92820i −0.412568 0.714590i
\(95\) 3.50000 + 6.06218i 0.359092 + 0.621966i
\(96\) 1.73205i 0.176777i
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) −3.00000 5.19615i −0.301511 0.522233i
\(100\) 2.00000 + 3.46410i 0.200000 + 0.346410i
\(101\) 11.0000 1.09454 0.547270 0.836956i \(-0.315667\pi\)
0.547270 + 0.836956i \(0.315667\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 1.00000 1.73205i 0.0980581 0.169842i
\(105\) 0 0
\(106\) −2.00000 3.46410i −0.194257 0.336463i
\(107\) −4.00000 6.92820i −0.386695 0.669775i 0.605308 0.795991i \(-0.293050\pi\)
−0.992003 + 0.126217i \(0.959717\pi\)
\(108\) −4.50000 + 2.59808i −0.433013 + 0.250000i
\(109\) −2.00000 + 3.46410i −0.191565 + 0.331801i −0.945769 0.324840i \(-0.894690\pi\)
0.754204 + 0.656640i \(0.228023\pi\)
\(110\) −1.00000 + 1.73205i −0.0953463 + 0.165145i
\(111\) 10.3923i 0.986394i
\(112\) 0 0
\(113\) 0.500000 0.866025i 0.0470360 0.0814688i −0.841549 0.540181i \(-0.818356\pi\)
0.888585 + 0.458712i \(0.151689\pi\)
\(114\) −10.5000 6.06218i −0.983415 0.567775i
\(115\) −3.00000 −0.279751
\(116\) 4.00000 6.92820i 0.371391 0.643268i
\(117\) 6.00000 0.554700
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 1.50000 + 0.866025i 0.136931 + 0.0790569i
\(121\) −7.00000 −0.636364
\(122\) 6.50000 + 11.2583i 0.588482 + 1.01928i
\(123\) 18.0000 10.3923i 1.62301 0.937043i
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 13.8564i 1.21999i
\(130\) −1.00000 1.73205i −0.0877058 0.151911i
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) 3.46410i 0.301511i
\(133\) 0 0
\(134\) −2.00000 −0.172774
\(135\) 5.19615i 0.447214i
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 4.50000 2.59808i 0.383065 0.221163i
\(139\) 4.50000 7.79423i 0.381685 0.661098i −0.609618 0.792695i \(-0.708677\pi\)
0.991303 + 0.131597i \(0.0420106\pi\)
\(140\) 0 0
\(141\) 12.0000 6.92820i 1.01058 0.583460i
\(142\) 2.50000 4.33013i 0.209795 0.363376i
\(143\) −2.00000 + 3.46410i −0.167248 + 0.289683i
\(144\) −3.00000 −0.250000
\(145\) −4.00000 6.92820i −0.332182 0.575356i
\(146\) −7.00000 12.1244i −0.579324 1.00342i
\(147\) 0 0
\(148\) 3.00000 5.19615i 0.246598 0.427121i
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) −6.00000 + 3.46410i −0.489898 + 0.282843i
\(151\) 19.0000 1.54620 0.773099 0.634285i \(-0.218706\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(152\) −3.50000 6.06218i −0.283887 0.491708i
\(153\) 0 0
\(154\) 0 0
\(155\) −2.00000 3.46410i −0.160644 0.278243i
\(156\) 3.00000 + 1.73205i 0.240192 + 0.138675i
\(157\) 5.50000 + 9.52628i 0.438948 + 0.760280i 0.997609 0.0691164i \(-0.0220180\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 5.50000 + 9.52628i 0.437557 + 0.757870i
\(159\) 6.00000 3.46410i 0.475831 0.274721i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 0 0
\(162\) −4.50000 7.79423i −0.353553 0.612372i
\(163\) 3.00000 + 5.19615i 0.234978 + 0.406994i 0.959266 0.282503i \(-0.0911648\pi\)
−0.724288 + 0.689497i \(0.757831\pi\)
\(164\) 12.0000 0.937043
\(165\) −3.00000 1.73205i −0.233550 0.134840i
\(166\) −12.0000 −0.931381
\(167\) 1.00000 1.73205i 0.0773823 0.134030i −0.824737 0.565516i \(-0.808677\pi\)
0.902120 + 0.431486i \(0.142010\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 10.5000 18.1865i 0.802955 1.39076i
\(172\) 4.00000 6.92820i 0.304997 0.528271i
\(173\) −11.0000 + 19.0526i −0.836315 + 1.44854i 0.0566411 + 0.998395i \(0.481961\pi\)
−0.892956 + 0.450145i \(0.851372\pi\)
\(174\) 12.0000 + 6.92820i 0.909718 + 0.525226i
\(175\) 0 0
\(176\) 1.00000 1.73205i 0.0753778 0.130558i
\(177\) 6.92820i 0.520756i
\(178\) −14.0000 −1.04934
\(179\) 12.0000 20.7846i 0.896922 1.55351i 0.0655145 0.997852i \(-0.479131\pi\)
0.831408 0.555663i \(-0.187536\pi\)
\(180\) −1.50000 + 2.59808i −0.111803 + 0.193649i
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) −19.5000 + 11.2583i −1.44148 + 0.832240i
\(184\) 3.00000 0.221163
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 6.00000 + 3.46410i 0.439941 + 0.254000i
\(187\) 0 0
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) −7.00000 −0.507833
\(191\) −1.50000 + 2.59808i −0.108536 + 0.187990i −0.915177 0.403051i \(-0.867950\pi\)
0.806641 + 0.591041i \(0.201283\pi\)
\(192\) −1.50000 0.866025i −0.108253 0.0625000i
\(193\) −2.50000 4.33013i −0.179954 0.311689i 0.761911 0.647682i \(-0.224262\pi\)
−0.941865 + 0.335993i \(0.890928\pi\)
\(194\) 2.00000 0.143592
\(195\) 3.00000 1.73205i 0.214834 0.124035i
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 6.00000 0.426401
\(199\) −7.00000 + 12.1244i −0.496217 + 0.859473i −0.999990 0.00436292i \(-0.998611\pi\)
0.503774 + 0.863836i \(0.331945\pi\)
\(200\) −4.00000 −0.282843
\(201\) 3.46410i 0.244339i
\(202\) −5.50000 + 9.52628i −0.386979 + 0.670267i
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 10.3923i 0.419058 0.725830i
\(206\) 4.00000 6.92820i 0.278693 0.482711i
\(207\) 4.50000 + 7.79423i 0.312772 + 0.541736i
\(208\) 1.00000 + 1.73205i 0.0693375 + 0.120096i
\(209\) 7.00000 + 12.1244i 0.484200 + 0.838659i
\(210\) 0 0
\(211\) 11.0000 19.0526i 0.757271 1.31163i −0.186966 0.982366i \(-0.559865\pi\)
0.944237 0.329266i \(-0.106801\pi\)
\(212\) 4.00000 0.274721
\(213\) 7.50000 + 4.33013i 0.513892 + 0.296695i
\(214\) 8.00000 0.546869
\(215\) −4.00000 6.92820i −0.272798 0.472500i
\(216\) 5.19615i 0.353553i
\(217\) 0 0
\(218\) −2.00000 3.46410i −0.135457 0.234619i
\(219\) 21.0000 12.1244i 1.41905 0.819288i
\(220\) −1.00000 1.73205i −0.0674200 0.116775i
\(221\) 0 0
\(222\) 9.00000 + 5.19615i 0.604040 + 0.348743i
\(223\) −1.00000 1.73205i −0.0669650 0.115987i 0.830599 0.556871i \(-0.187998\pi\)
−0.897564 + 0.440884i \(0.854665\pi\)
\(224\) 0 0
\(225\) −6.00000 10.3923i −0.400000 0.692820i
\(226\) 0.500000 + 0.866025i 0.0332595 + 0.0576072i
\(227\) −17.0000 −1.12833 −0.564165 0.825662i \(-0.690802\pi\)
−0.564165 + 0.825662i \(0.690802\pi\)
\(228\) 10.5000 6.06218i 0.695379 0.401478i
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 1.50000 2.59808i 0.0989071 0.171312i
\(231\) 0 0
\(232\) 4.00000 + 6.92820i 0.262613 + 0.454859i
\(233\) −0.500000 0.866025i −0.0327561 0.0567352i 0.849183 0.528099i \(-0.177095\pi\)
−0.881939 + 0.471364i \(0.843762\pi\)
\(234\) −3.00000 + 5.19615i −0.196116 + 0.339683i
\(235\) 4.00000 6.92820i 0.260931 0.451946i
\(236\) 2.00000 3.46410i 0.130189 0.225494i
\(237\) −16.5000 + 9.52628i −1.07179 + 0.618798i
\(238\) 0 0
\(239\) 7.50000 12.9904i 0.485135 0.840278i −0.514719 0.857359i \(-0.672104\pi\)
0.999854 + 0.0170808i \(0.00543724\pi\)
\(240\) −1.50000 + 0.866025i −0.0968246 + 0.0559017i
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 3.50000 6.06218i 0.224989 0.389692i
\(243\) 13.5000 7.79423i 0.866025 0.500000i
\(244\) −13.0000 −0.832240
\(245\) 0 0
\(246\) 20.7846i 1.32518i
\(247\) −14.0000 −0.890799
\(248\) 2.00000 + 3.46410i 0.127000 + 0.219971i
\(249\) 20.7846i 1.31717i
\(250\) −4.50000 + 7.79423i −0.284605 + 0.492950i
\(251\) −7.00000 −0.441836 −0.220918 0.975292i \(-0.570905\pi\)
−0.220918 + 0.975292i \(0.570905\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 9.50000 16.4545i 0.596083 1.03245i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −8.00000 −0.499026 −0.249513 0.968371i \(-0.580271\pi\)
−0.249513 + 0.968371i \(0.580271\pi\)
\(258\) 12.0000 + 6.92820i 0.747087 + 0.431331i
\(259\) 0 0
\(260\) 2.00000 0.124035
\(261\) −12.0000 + 20.7846i −0.742781 + 1.28654i
\(262\) 7.50000 12.9904i 0.463352 0.802548i
\(263\) 19.0000 1.17159 0.585795 0.810459i \(-0.300782\pi\)
0.585795 + 0.810459i \(0.300782\pi\)
\(264\) 3.00000 + 1.73205i 0.184637 + 0.106600i
\(265\) 2.00000 3.46410i 0.122859 0.212798i
\(266\) 0 0
\(267\) 24.2487i 1.48400i
\(268\) 1.00000 1.73205i 0.0610847 0.105802i
\(269\) 3.50000 6.06218i 0.213399 0.369618i −0.739377 0.673291i \(-0.764880\pi\)
0.952776 + 0.303674i \(0.0982133\pi\)
\(270\) −4.50000 2.59808i −0.273861 0.158114i
\(271\) 7.00000 + 12.1244i 0.425220 + 0.736502i 0.996441 0.0842940i \(-0.0268635\pi\)
−0.571221 + 0.820796i \(0.693530\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 1.00000 1.73205i 0.0604122 0.104637i
\(275\) 8.00000 0.482418
\(276\) 5.19615i 0.312772i
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 4.50000 + 7.79423i 0.269892 + 0.467467i
\(279\) −6.00000 + 10.3923i −0.359211 + 0.622171i
\(280\) 0 0
\(281\) 7.50000 + 12.9904i 0.447412 + 0.774941i 0.998217 0.0596933i \(-0.0190123\pi\)
−0.550804 + 0.834634i \(0.685679\pi\)
\(282\) 13.8564i 0.825137i
\(283\) 12.5000 + 21.6506i 0.743048 + 1.28700i 0.951101 + 0.308879i \(0.0999539\pi\)
−0.208053 + 0.978117i \(0.566713\pi\)
\(284\) 2.50000 + 4.33013i 0.148348 + 0.256946i
\(285\) 12.1244i 0.718185i
\(286\) −2.00000 3.46410i −0.118262 0.204837i
\(287\) 0 0
\(288\) 1.50000 2.59808i 0.0883883 0.153093i
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 8.00000 0.469776
\(291\) 3.46410i 0.203069i
\(292\) 14.0000 0.819288
\(293\) 4.50000 7.79423i 0.262893 0.455344i −0.704117 0.710084i \(-0.748657\pi\)
0.967009 + 0.254741i \(0.0819901\pi\)
\(294\) 0 0
\(295\) −2.00000 3.46410i −0.116445 0.201688i
\(296\) 3.00000 + 5.19615i 0.174371 + 0.302020i
\(297\) 10.3923i 0.603023i
\(298\) −5.00000 + 8.66025i −0.289642 + 0.501675i
\(299\) 3.00000 5.19615i 0.173494 0.300501i
\(300\) 6.92820i 0.400000i
\(301\) 0 0
\(302\) −9.50000 + 16.4545i −0.546664 + 0.946849i
\(303\) −16.5000 9.52628i −0.947900 0.547270i
\(304\) 7.00000 0.401478
\(305\) −6.50000 + 11.2583i −0.372189 + 0.644650i
\(306\) 0 0
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 0 0
\(309\) 12.0000 + 6.92820i 0.682656 + 0.394132i
\(310\) 4.00000 0.227185
\(311\) −5.00000 8.66025i −0.283524 0.491078i 0.688726 0.725022i \(-0.258170\pi\)
−0.972250 + 0.233944i \(0.924837\pi\)
\(312\) −3.00000 + 1.73205i −0.169842 + 0.0980581i
\(313\) 3.00000 5.19615i 0.169570 0.293704i −0.768699 0.639611i \(-0.779095\pi\)
0.938269 + 0.345907i \(0.112429\pi\)
\(314\) −11.0000 −0.620766
\(315\) 0 0
\(316\) −11.0000 −0.618798
\(317\) −12.0000 + 20.7846i −0.673987 + 1.16738i 0.302777 + 0.953062i \(0.402086\pi\)
−0.976764 + 0.214318i \(0.931247\pi\)
\(318\) 6.92820i 0.388514i
\(319\) −8.00000 13.8564i −0.447914 0.775810i
\(320\) −1.00000 −0.0559017
\(321\) 13.8564i 0.773389i
\(322\) 0 0
\(323\) 0 0
\(324\) 9.00000 0.500000
\(325\) −4.00000 + 6.92820i −0.221880 + 0.384308i
\(326\) −6.00000 −0.332309
\(327\) 6.00000 3.46410i 0.331801 0.191565i
\(328\) −6.00000 + 10.3923i −0.331295 + 0.573819i
\(329\) 0 0
\(330\) 3.00000 1.73205i 0.165145 0.0953463i
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) 6.00000 10.3923i 0.329293 0.570352i
\(333\) −9.00000 + 15.5885i −0.493197 + 0.854242i
\(334\) 1.00000 + 1.73205i 0.0547176 + 0.0947736i
\(335\) −1.00000 1.73205i −0.0546358 0.0946320i
\(336\) 0 0
\(337\) 11.0000 19.0526i 0.599208 1.03786i −0.393730 0.919226i \(-0.628816\pi\)
0.992938 0.118633i \(-0.0378512\pi\)
\(338\) −9.00000 −0.489535
\(339\) −1.50000 + 0.866025i −0.0814688 + 0.0470360i
\(340\) 0 0
\(341\) −4.00000 6.92820i −0.216612 0.375183i
\(342\) 10.5000 + 18.1865i 0.567775 + 0.983415i
\(343\) 0 0
\(344\) 4.00000 + 6.92820i 0.215666 + 0.373544i
\(345\) 4.50000 + 2.59808i 0.242272 + 0.139876i
\(346\) −11.0000 19.0526i −0.591364 1.02427i
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) −12.0000 + 6.92820i −0.643268 + 0.371391i
\(349\) −15.0000 25.9808i −0.802932 1.39072i −0.917679 0.397324i \(-0.869939\pi\)
0.114747 0.993395i \(-0.463394\pi\)
\(350\) 0 0
\(351\) −9.00000 5.19615i −0.480384 0.277350i
\(352\) 1.00000 + 1.73205i 0.0533002 + 0.0923186i
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 6.00000 + 3.46410i 0.318896 + 0.184115i
\(355\) 5.00000 0.265372
\(356\) 7.00000 12.1244i 0.370999 0.642590i
\(357\) 0 0
\(358\) 12.0000 + 20.7846i 0.634220 + 1.09850i
\(359\) −14.5000 25.1147i −0.765281 1.32551i −0.940098 0.340904i \(-0.889267\pi\)
0.174817 0.984601i \(-0.444067\pi\)
\(360\) −1.50000 2.59808i −0.0790569 0.136931i
\(361\) −15.0000 + 25.9808i −0.789474 + 1.36741i
\(362\) 3.50000 6.06218i 0.183956 0.318621i
\(363\) 10.5000 + 6.06218i 0.551107 + 0.318182i
\(364\) 0 0
\(365\) 7.00000 12.1244i 0.366397 0.634618i
\(366\) 22.5167i 1.17696i
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) −1.50000 + 2.59808i −0.0781929 + 0.135434i
\(369\) −36.0000 −1.87409
\(370\) 6.00000 0.311925
\(371\) 0 0
\(372\) −6.00000 + 3.46410i −0.311086 + 0.179605i
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 0 0
\(375\) −13.5000 7.79423i −0.697137 0.402492i
\(376\) −4.00000 + 6.92820i −0.206284 + 0.357295i
\(377\) 16.0000 0.824042
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 3.50000 6.06218i 0.179546 0.310983i
\(381\) 28.5000 + 16.4545i 1.46010 + 0.842989i
\(382\) −1.50000 2.59808i −0.0767467 0.132929i
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) 1.50000 0.866025i 0.0765466 0.0441942i
\(385\) 0 0
\(386\) 5.00000 0.254493
\(387\) −12.0000 + 20.7846i −0.609994 + 1.05654i
\(388\) −1.00000 + 1.73205i −0.0507673 + 0.0879316i
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 3.46410i 0.175412i
\(391\) 0 0
\(392\) 0 0
\(393\) 22.5000 + 12.9904i 1.13497 + 0.655278i
\(394\) 6.00000 10.3923i 0.302276 0.523557i
\(395\) −5.50000 + 9.52628i −0.276735 + 0.479319i
\(396\) −3.00000 + 5.19615i −0.150756 + 0.261116i
\(397\) 7.00000 + 12.1244i 0.351320 + 0.608504i 0.986481 0.163876i \(-0.0523996\pi\)
−0.635161 + 0.772380i \(0.719066\pi\)
\(398\) −7.00000 12.1244i −0.350878 0.607739i
\(399\) 0 0
\(400\) 2.00000 3.46410i 0.100000 0.173205i
\(401\) 3.00000 0.149813 0.0749064 0.997191i \(-0.476134\pi\)
0.0749064 + 0.997191i \(0.476134\pi\)
\(402\) 3.00000 + 1.73205i 0.149626 + 0.0863868i
\(403\) 8.00000 0.398508
\(404\) −5.50000 9.52628i −0.273635 0.473950i
\(405\) 4.50000 7.79423i 0.223607 0.387298i
\(406\) 0 0
\(407\) −6.00000 10.3923i −0.297409 0.515127i
\(408\) 0 0
\(409\) −12.0000 20.7846i −0.593362 1.02773i −0.993776 0.111398i \(-0.964467\pi\)
0.400414 0.916334i \(-0.368866\pi\)
\(410\) 6.00000 + 10.3923i 0.296319 + 0.513239i
\(411\) 3.00000 + 1.73205i 0.147979 + 0.0854358i
\(412\) 4.00000 + 6.92820i 0.197066 + 0.341328i
\(413\) 0 0
\(414\) −9.00000 −0.442326
\(415\) −6.00000 10.3923i −0.294528 0.510138i
\(416\) −2.00000 −0.0980581
\(417\) −13.5000 + 7.79423i −0.661098 + 0.381685i
\(418\) −14.0000 −0.684762
\(419\) −2.50000 + 4.33013i −0.122133 + 0.211541i −0.920609 0.390487i \(-0.872307\pi\)
0.798476 + 0.602027i \(0.205640\pi\)
\(420\) 0 0
\(421\) 18.0000 + 31.1769i 0.877266 + 1.51947i 0.854329 + 0.519733i \(0.173969\pi\)
0.0229375 + 0.999737i \(0.492698\pi\)
\(422\) 11.0000 + 19.0526i 0.535472 + 0.927464i
\(423\) −24.0000 −1.16692
\(424\) −2.00000 + 3.46410i −0.0971286 + 0.168232i
\(425\) 0 0
\(426\) −7.50000 + 4.33013i −0.363376 + 0.209795i
\(427\) 0 0
\(428\) −4.00000 + 6.92820i −0.193347 + 0.334887i
\(429\) 6.00000 3.46410i 0.289683 0.167248i
\(430\) 8.00000 0.385794
\(431\) −16.0000 + 27.7128i −0.770693 + 1.33488i 0.166491 + 0.986043i \(0.446756\pi\)
−0.937184 + 0.348836i \(0.886577\pi\)
\(432\) 4.50000 + 2.59808i 0.216506 + 0.125000i
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) 0 0
\(435\) 13.8564i 0.664364i
\(436\) 4.00000 0.191565
\(437\) −10.5000 18.1865i −0.502283 0.869980i
\(438\) 24.2487i 1.15865i
\(439\) −18.0000 + 31.1769i −0.859093 + 1.48799i 0.0137020 + 0.999906i \(0.495638\pi\)
−0.872795 + 0.488087i \(0.837695\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0000 + 20.7846i −0.570137 + 0.987507i 0.426414 + 0.904528i \(0.359777\pi\)
−0.996551 + 0.0829786i \(0.973557\pi\)
\(444\) −9.00000 + 5.19615i −0.427121 + 0.246598i
\(445\) −7.00000 12.1244i −0.331832 0.574750i
\(446\) 2.00000 0.0947027
\(447\) −15.0000 8.66025i −0.709476 0.409616i
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 12.0000 0.565685
\(451\) 12.0000 20.7846i 0.565058 0.978709i
\(452\) −1.00000 −0.0470360
\(453\) −28.5000 16.4545i −1.33905 0.773099i
\(454\) 8.50000 14.7224i 0.398925 0.690958i
\(455\) 0 0
\(456\) 12.1244i 0.567775i
\(457\) −8.50000 + 14.7224i −0.397613 + 0.688686i −0.993431 0.114433i \(-0.963495\pi\)
0.595818 + 0.803120i \(0.296828\pi\)
\(458\) −6.50000 + 11.2583i −0.303725 + 0.526067i
\(459\) 0 0
\(460\) 1.50000 + 2.59808i 0.0699379 + 0.121136i
\(461\) −4.50000 7.79423i −0.209586 0.363013i 0.741998 0.670402i \(-0.233878\pi\)
−0.951584 + 0.307388i \(0.900545\pi\)
\(462\) 0 0
\(463\) 0.500000 0.866025i 0.0232370 0.0402476i −0.854173 0.519989i \(-0.825936\pi\)
0.877410 + 0.479741i \(0.159269\pi\)
\(464\) −8.00000 −0.371391
\(465\) 6.92820i 0.321288i
\(466\) 1.00000 0.0463241
\(467\) −14.0000 24.2487i −0.647843 1.12210i −0.983637 0.180161i \(-0.942338\pi\)
0.335794 0.941935i \(-0.390995\pi\)
\(468\) −3.00000 5.19615i −0.138675 0.240192i
\(469\) 0 0
\(470\) 4.00000 + 6.92820i 0.184506 + 0.319574i
\(471\) 19.0526i 0.877896i
\(472\) 2.00000 + 3.46410i 0.0920575 + 0.159448i
\(473\) −8.00000 13.8564i −0.367840 0.637118i
\(474\) 19.0526i 0.875113i
\(475\) 14.0000 + 24.2487i 0.642364 + 1.11261i
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 7.50000 + 12.9904i 0.343042 + 0.594166i
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 1.73205i 0.0790569i
\(481\) 12.0000 0.547153
\(482\) 5.00000 8.66025i 0.227744 0.394464i
\(483\) 0 0
\(484\) 3.50000 + 6.06218i 0.159091 + 0.275554i
\(485\) 1.00000 + 1.73205i 0.0454077 + 0.0786484i
\(486\) 15.5885i 0.707107i
\(487\) −12.5000 + 21.6506i −0.566429 + 0.981084i 0.430486 + 0.902597i \(0.358342\pi\)
−0.996915 + 0.0784867i \(0.974991\pi\)
\(488\) 6.50000 11.2583i 0.294241 0.509641i
\(489\) 10.3923i 0.469956i
\(490\) 0 0
\(491\) −3.00000 + 5.19615i −0.135388 + 0.234499i −0.925746 0.378147i \(-0.876561\pi\)
0.790358 + 0.612646i \(0.209895\pi\)
\(492\) −18.0000 10.3923i −0.811503 0.468521i
\(493\) 0 0
\(494\) 7.00000 12.1244i 0.314945 0.545501i
\(495\) 3.00000 + 5.19615i 0.134840 + 0.233550i
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 18.0000 + 10.3923i 0.806599 + 0.465690i
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) −4.50000 7.79423i −0.201246 0.348569i
\(501\) −3.00000 + 1.73205i −0.134030 + 0.0773823i
\(502\) 3.50000 6.06218i 0.156213 0.270568i
\(503\) −14.0000 −0.624229 −0.312115 0.950044i \(-0.601037\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(504\) 0 0
\(505\) −11.0000 −0.489494
\(506\) 3.00000 5.19615i 0.133366 0.230997i
\(507\) 15.5885i 0.692308i
\(508\) 9.50000 + 16.4545i 0.421494 + 0.730050i
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −31.5000 + 18.1865i −1.39076 + 0.802955i
\(514\) 4.00000 6.92820i 0.176432 0.305590i
\(515\) 8.00000 0.352522
\(516\) −12.0000 + 6.92820i −0.528271 + 0.304997i
\(517\) 8.00000 13.8564i 0.351840 0.609404i
\(518\) 0 0
\(519\) 33.0000 19.0526i 1.44854 0.836315i
\(520\) −1.00000 + 1.73205i −0.0438529 + 0.0759555i
\(521\) 7.00000 12.1244i 0.306676 0.531178i −0.670957 0.741496i \(-0.734117\pi\)
0.977633 + 0.210318i \(0.0674500\pi\)
\(522\) −12.0000 20.7846i −0.525226 0.909718i
\(523\) 17.5000 + 30.3109i 0.765222 + 1.32540i 0.940129 + 0.340818i \(0.110704\pi\)
−0.174908 + 0.984585i \(0.555963\pi\)
\(524\) 7.50000 + 12.9904i 0.327639 + 0.567487i
\(525\) 0 0
\(526\) −9.50000 + 16.4545i −0.414220 + 0.717450i
\(527\) 0 0
\(528\) −3.00000 + 1.73205i −0.130558 + 0.0753778i
\(529\) −14.0000 −0.608696
\(530\) 2.00000 + 3.46410i 0.0868744 + 0.150471i
\(531\) −6.00000 + 10.3923i −0.260378 + 0.450988i
\(532\) 0 0
\(533\) 12.0000 + 20.7846i 0.519778 + 0.900281i
\(534\) 21.0000 + 12.1244i 0.908759 + 0.524672i
\(535\) 4.00000 + 6.92820i 0.172935 + 0.299532i
\(536\) 1.00000 + 1.73205i 0.0431934 + 0.0748132i
\(537\) −36.0000 + 20.7846i −1.55351 + 0.896922i
\(538\) 3.50000 + 6.06218i 0.150896 + 0.261359i
\(539\) 0 0
\(540\) 4.50000 2.59808i 0.193649 0.111803i
\(541\) 10.0000 + 17.3205i 0.429934 + 0.744667i 0.996867 0.0790969i \(-0.0252036\pi\)
−0.566933 + 0.823764i \(0.691870\pi\)
\(542\) −14.0000 −0.601351
\(543\) 10.5000 + 6.06218i 0.450598 + 0.260153i
\(544\) 0 0
\(545\) 2.00000 3.46410i 0.0856706 0.148386i
\(546\) 0 0
\(547\) 4.00000 + 6.92820i 0.171028 + 0.296229i 0.938779 0.344519i \(-0.111958\pi\)
−0.767752 + 0.640747i \(0.778625\pi\)
\(548\) 1.00000 + 1.73205i 0.0427179 + 0.0739895i
\(549\) 39.0000 1.66448
\(550\) −4.00000 + 6.92820i −0.170561 + 0.295420i
\(551\) 28.0000 48.4974i 1.19284 2.06606i
\(552\) −4.50000 2.59808i −0.191533 0.110581i
\(553\) 0 0
\(554\) 1.00000 1.73205i 0.0424859 0.0735878i
\(555\) 10.3923i 0.441129i
\(556\) −9.00000 −0.381685
\(557\) −9.00000 + 15.5885i −0.381342 + 0.660504i −0.991254 0.131965i \(-0.957871\pi\)
0.609912 + 0.792469i \(0.291205\pi\)
\(558\) −6.00000 10.3923i −0.254000 0.439941i
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) −15.0000 −0.632737
\(563\) 5.50000 + 9.52628i 0.231797 + 0.401485i 0.958337 0.285640i \(-0.0922060\pi\)
−0.726540 + 0.687124i \(0.758873\pi\)
\(564\) −12.0000 6.92820i −0.505291 0.291730i
\(565\) −0.500000 + 0.866025i −0.0210352 + 0.0364340i
\(566\) −25.0000 −1.05083
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) 9.00000 15.5885i 0.377300 0.653502i −0.613369 0.789797i \(-0.710186\pi\)
0.990668 + 0.136295i \(0.0435194\pi\)
\(570\) 10.5000 + 6.06218i 0.439797 + 0.253917i
\(571\) −6.00000 10.3923i −0.251092 0.434904i 0.712735 0.701434i \(-0.247456\pi\)
−0.963827 + 0.266529i \(0.914123\pi\)
\(572\) 4.00000 0.167248
\(573\) 4.50000 2.59808i 0.187990 0.108536i
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) 14.0000 24.2487i 0.582828 1.00949i −0.412315 0.911041i \(-0.635280\pi\)
0.995142 0.0984456i \(-0.0313871\pi\)
\(578\) −17.0000 −0.707107
\(579\) 8.66025i 0.359908i
\(580\) −4.00000 + 6.92820i −0.166091 + 0.287678i
\(581\) 0 0
\(582\) −3.00000 1.73205i −0.124354 0.0717958i
\(583\) 4.00000 6.92820i 0.165663 0.286937i
\(584\) −7.00000 + 12.1244i −0.289662 + 0.501709i
\(585\) −6.00000 −0.248069
\(586\) 4.50000 + 7.79423i 0.185893 + 0.321977i
\(587\) −11.5000 19.9186i −0.474656 0.822128i 0.524923 0.851150i \(-0.324094\pi\)
−0.999579 + 0.0290218i \(0.990761\pi\)
\(588\) 0 0
\(589\) 14.0000 24.2487i 0.576860 0.999151i
\(590\) 4.00000 0.164677
\(591\) 18.0000 + 10.3923i 0.740421 + 0.427482i
\(592\) −6.00000 −0.246598
\(593\) 21.0000 + 36.3731i 0.862367 + 1.49366i 0.869638 + 0.493689i \(0.164352\pi\)
−0.00727173 + 0.999974i \(0.502315\pi\)
\(594\) −9.00000 5.19615i −0.369274 0.213201i
\(595\) 0 0
\(596\) −5.00000 8.66025i −0.204808 0.354738i
\(597\) 21.0000 12.1244i 0.859473 0.496217i
\(598\) 3.00000 + 5.19615i 0.122679 + 0.212486i
\(599\) −6.00000 10.3923i −0.245153 0.424618i 0.717021 0.697051i \(-0.245505\pi\)
−0.962175 + 0.272433i \(0.912172\pi\)
\(600\) 6.00000 + 3.46410i 0.244949 + 0.141421i
\(601\) 13.0000 + 22.5167i 0.530281 + 0.918474i 0.999376 + 0.0353259i \(0.0112469\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) −3.00000 + 5.19615i −0.122169 + 0.211604i
\(604\) −9.50000 16.4545i −0.386550 0.669523i
\(605\) 7.00000 0.284590
\(606\) 16.5000 9.52628i 0.670267 0.386979i
\(607\) 6.00000 0.243532 0.121766 0.992559i \(-0.461144\pi\)
0.121766 + 0.992559i \(0.461144\pi\)
\(608\) −3.50000 + 6.06218i −0.141944 + 0.245854i
\(609\) 0 0
\(610\) −6.50000 11.2583i −0.263177 0.455836i
\(611\) 8.00000 + 13.8564i 0.323645 + 0.560570i
\(612\) 0 0
\(613\) 5.00000 8.66025i 0.201948 0.349784i −0.747208 0.664590i \(-0.768606\pi\)
0.949156 + 0.314806i \(0.101939\pi\)
\(614\) 3.50000 6.06218i 0.141249 0.244650i
\(615\) −18.0000 + 10.3923i −0.725830 + 0.419058i
\(616\) 0 0
\(617\) 11.0000 19.0526i 0.442843 0.767027i −0.555056 0.831813i \(-0.687303\pi\)
0.997899 + 0.0647859i \(0.0206365\pi\)
\(618\) −12.0000 + 6.92820i −0.482711 + 0.278693i
\(619\) 11.0000 0.442127 0.221064 0.975259i \(-0.429047\pi\)
0.221064 + 0.975259i \(0.429047\pi\)
\(620\) −2.00000 + 3.46410i −0.0803219 + 0.139122i
\(621\) 15.5885i 0.625543i
\(622\) 10.0000 0.400963
\(623\) 0 0
\(624\) 3.46410i 0.138675i
\(625\) 11.0000 0.440000
\(626\) 3.00000 + 5.19615i 0.119904 + 0.207680i
\(627\) 24.2487i 0.968400i
\(628\) 5.50000 9.52628i 0.219474 0.380140i
\(629\) 0 0
\(630\) 0 0
\(631\) 9.00000 0.358284 0.179142 0.983823i \(-0.442668\pi\)
0.179142 + 0.983823i \(0.442668\pi\)
\(632\) 5.50000 9.52628i 0.218778 0.378935i
\(633\) −33.0000 + 19.0526i −1.31163 + 0.757271i
\(634\) −12.0000 20.7846i −0.476581 0.825462i
\(635\) 19.0000 0.753992
\(636\) −6.00000 3.46410i −0.237915 0.137361i
\(637\) 0 0
\(638\) 16.0000 0.633446
\(639\) −7.50000 12.9904i −0.296695 0.513892i
\(640\) 0.500000 0.866025i 0.0197642 0.0342327i
\(641\) 47.0000 1.85639 0.928194 0.372096i \(-0.121361\pi\)
0.928194 + 0.372096i \(0.121361\pi\)
\(642\) −12.0000 6.92820i −0.473602 0.273434i
\(643\) −6.00000 + 10.3923i −0.236617 + 0.409832i −0.959741 0.280885i \(-0.909372\pi\)
0.723124 + 0.690718i \(0.242705\pi\)
\(644\) 0 0
\(645\) 13.8564i 0.545595i
\(646\) 0 0
\(647\) −21.0000 + 36.3731i −0.825595 + 1.42997i 0.0758684 + 0.997118i \(0.475827\pi\)
−0.901464 + 0.432855i \(0.857506\pi\)
\(648\) −4.50000 + 7.79423i −0.176777 + 0.306186i
\(649\) −4.00000 6.92820i −0.157014 0.271956i
\(650\) −4.00000 6.92820i −0.156893 0.271746i
\(651\) 0 0
\(652\) 3.00000 5.19615i 0.117489 0.203497i
\(653\) −32.0000 −1.25226 −0.626128 0.779720i \(-0.715361\pi\)
−0.626128 + 0.779720i \(0.715361\pi\)
\(654\) 6.92820i 0.270914i
\(655\) 15.0000 0.586098
\(656\) −6.00000 10.3923i −0.234261 0.405751i
\(657\) −42.0000 −1.63858
\(658\) 0 0
\(659\) −10.0000 17.3205i −0.389545 0.674711i 0.602844 0.797859i \(-0.294034\pi\)
−0.992388 + 0.123148i \(0.960701\pi\)
\(660\) 3.46410i 0.134840i
\(661\) −15.5000 26.8468i −0.602880 1.04422i −0.992383 0.123194i \(-0.960686\pi\)
0.389503 0.921025i \(-0.372647\pi\)
\(662\) 2.00000 + 3.46410i 0.0777322 + 0.134636i
\(663\) 0 0
\(664\) 6.00000 + 10.3923i 0.232845 + 0.403300i
\(665\) 0 0
\(666\) −9.00000 15.5885i −0.348743 0.604040i
\(667\) 12.0000 + 20.7846i 0.464642 + 0.804783i
\(668\) −2.00000 −0.0773823
\(669\) 3.46410i 0.133930i
\(670\) 2.00000 0.0772667
\(671\) −13.0000 + 22.5167i −0.501859 + 0.869246i
\(672\) 0 0
\(673\) 0.500000 + 0.866025i 0.0192736 + 0.0333828i 0.875501 0.483216i \(-0.160531\pi\)
−0.856228 + 0.516599i \(0.827198\pi\)
\(674\) 11.0000 + 19.0526i 0.423704 + 0.733877i
\(675\) 20.7846i 0.800000i
\(676\) 4.50000 7.79423i 0.173077 0.299778i
\(677\) 3.00000 5.19615i 0.115299 0.199704i −0.802600 0.596518i \(-0.796551\pi\)
0.917899 + 0.396813i \(0.129884\pi\)
\(678\) 1.73205i 0.0665190i
\(679\) 0 0
\(680\) 0 0
\(681\) 25.5000 + 14.7224i 0.977162 + 0.564165i
\(682\) 8.00000 0.306336
\(683\) 5.00000 8.66025i 0.191320 0.331375i −0.754368 0.656452i \(-0.772057\pi\)
0.945688 + 0.325076i \(0.105390\pi\)
\(684\) −21.0000 −0.802955
\(685\) 2.00000 0.0764161
\(686\) 0 0
\(687\) −19.5000 11.2583i −0.743971 0.429532i
\(688\) −8.00000 −0.304997
\(689\) 4.00000 + 6.92820i 0.152388 + 0.263944i
\(690\) −4.50000 + 2.59808i −0.171312 + 0.0989071i
\(691\) −14.5000 + 25.1147i −0.551606 + 0.955410i 0.446553 + 0.894757i \(0.352651\pi\)
−0.998159 + 0.0606524i \(0.980682\pi\)
\(692\) 22.0000 0.836315
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −4.50000 + 7.79423i −0.170695 + 0.295652i
\(696\) 13.8564i 0.525226i
\(697\) 0 0
\(698\) 30.0000 1.13552
\(699\) 1.73205i 0.0655122i
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 9.00000 5.19615i 0.339683 0.196116i
\(703\) 21.0000 36.3731i 0.792030 1.37184i
\(704\) −2.00000 −0.0753778
\(705\) −12.0000 + 6.92820i −0.451946 + 0.260931i
\(706\) 12.0000 20.7846i 0.451626 0.782239i
\(707\) 0 0
\(708\) −6.00000 + 3.46410i −0.225494 + 0.130189i
\(709\) 16.0000 27.7128i 0.600893 1.04078i −0.391794 0.920053i \(-0.628145\pi\)
0.992686 0.120723i \(-0.0385214\pi\)
\(710\) −2.50000 + 4.33013i −0.0938233 + 0.162507i
\(711\) 33.0000 1.23760
\(712\) 7.00000 + 12.1244i 0.262336 + 0.454379i
\(713\) 6.00000 + 10.3923i 0.224702 + 0.389195i
\(714\) 0 0
\(715\) 2.00000 3.46410i 0.0747958 0.129550i
\(716\) −24.0000 −0.896922
\(717\) −22.5000 + 12.9904i −0.840278 + 0.485135i
\(718\) 29.0000 1.08227
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 3.00000 0.111803
\(721\) 0 0
\(722\) −15.0000 25.9808i −0.558242 0.966904i
\(723\) 15.0000 + 8.66025i 0.557856 + 0.322078i
\(724\) 3.50000 + 6.06218i 0.130076 + 0.225299i
\(725\) −16.0000 27.7128i −0.594225 1.02923i
\(726\) −10.5000 + 6.06218i −0.389692 + 0.224989i
\(727\) 13.0000 + 22.5167i 0.482143 + 0.835097i 0.999790 0.0204978i \(-0.00652512\pi\)
−0.517647 + 0.855595i \(0.673192\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 7.00000 + 12.1244i 0.259082 + 0.448743i
\(731\) 0 0
\(732\) 19.5000 + 11.2583i 0.720741 + 0.416120i
\(733\) −1.00000 −0.0369358 −0.0184679 0.999829i \(-0.505879\pi\)
−0.0184679 + 0.999829i \(0.505879\pi\)
\(734\) −16.0000 + 27.7128i −0.590571 + 1.02290i
\(735\) 0 0
\(736\) −1.50000 2.59808i −0.0552907 0.0957664i
\(737\) −2.00000 3.46410i −0.0736709 0.127602i
\(738\) 18.0000 31.1769i 0.662589 1.14764i
\(739\) 19.0000 32.9090i 0.698926 1.21058i −0.269913 0.962885i \(-0.586995\pi\)
0.968839 0.247691i \(-0.0796718\pi\)
\(740\) −3.00000 + 5.19615i −0.110282 + 0.191014i
\(741\) 21.0000 + 12.1244i 0.771454 + 0.445399i
\(742\) 0 0
\(743\) −24.0000 + 41.5692i −0.880475 + 1.52503i −0.0296605 + 0.999560i \(0.509443\pi\)
−0.850814 + 0.525467i \(0.823891\pi\)
\(744\) 6.92820i 0.254000i
\(745\) −10.0000 −0.366372
\(746\) 16.0000 27.7128i 0.585802 1.01464i
\(747\) −18.0000 + 31.1769i −0.658586 + 1.14070i
\(748\) 0 0
\(749\) 0 0
\(750\) 13.5000 7.79423i 0.492950 0.284605i
\(751\) −39.0000 −1.42313 −0.711565 0.702620i \(-0.752013\pi\)
−0.711565 + 0.702620i \(0.752013\pi\)
\(752\) −4.00000 6.92820i −0.145865 0.252646i
\(753\) 10.5000 + 6.06218i 0.382641 + 0.220918i
\(754\) −8.00000 + 13.8564i −0.291343 + 0.504621i
\(755\) −19.0000 −0.691481
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 6.00000 10.3923i 0.217930 0.377466i
\(759\) 9.00000 + 5.19615i 0.326679 + 0.188608i
\(760\) 3.50000 + 6.06218i 0.126958 + 0.219898i
\(761\) 20.0000 0.724999 0.362500 0.931984i \(-0.381923\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(762\) −28.5000 + 16.4545i −1.03245 + 0.596083i
\(763\) 0 0
\(764\) 3.00000 0.108536
\(765\) 0 0
\(766\) −3.00000 + 5.19615i −0.108394 + 0.187745i
\(767\) 8.00000 0.288863
\(768\) 1.73205i 0.0625000i
\(769\) 1.00000 1.73205i 0.0360609 0.0624593i −0.847432 0.530904i \(-0.821852\pi\)
0.883493 + 0.468445i \(0.155186\pi\)
\(770\) 0 0
\(771\) 12.0000 + 6.92820i 0.432169 + 0.249513i
\(772\) −2.50000 + 4.33013i −0.0899770 + 0.155845i
\(773\) 10.5000 18.1865i 0.377659 0.654124i −0.613062 0.790034i \(-0.710063\pi\)
0.990721 + 0.135910i \(0.0433959\pi\)
\(774\) −12.0000 20.7846i −0.431331 0.747087i
\(775\) −8.00000 13.8564i −0.287368 0.497737i
\(776\) −1.00000 1.73205i −0.0358979 0.0621770i
\(777\) 0 0
\(778\) 15.0000 25.9808i 0.537776 0.931455i
\(779\) 84.0000 3.00961
\(780\) −3.00000 1.73205i −0.107417 0.0620174i
\(781\) 10.0000 0.357828
\(782\) 0 0
\(783\) 36.0000 20.7846i 1.28654 0.742781i
\(784\) 0 0
\(785\) −5.50000 9.52628i −0.196303 0.340007i
\(786\) −22.5000 + 12.9904i −0.802548 + 0.463352i
\(787\) 2.00000 + 3.46410i 0.0712923 + 0.123482i 0.899468 0.436987i \(-0.143954\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(788\) 6.00000 + 10.3923i 0.213741 + 0.370211i
\(789\) −28.5000 16.4545i −1.01463 0.585795i
\(790\) −5.50000 9.52628i −0.195681 0.338930i
\(791\) 0 0
\(792\) −3.00000 5.19615i −0.106600 0.184637i
\(793\) −13.0000 22.5167i −0.461644 0.799590i
\(794\) −14.0000 −0.496841
\(795\) −6.00000 + 3.46410i −0.212798 + 0.122859i
\(796\) 14.0000 0.496217
\(797\) 25.5000 44.1673i 0.903256 1.56449i 0.0800155 0.996794i \(-0.474503\pi\)
0.823241 0.567692i \(-0.192164\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.00000 + 3.46410i 0.0707107 + 0.122474i
\(801\) −21.0000 + 36.3731i −0.741999 + 1.28518i
\(802\) −1.50000 + 2.59808i −0.0529668 + 0.0917413i
\(803\) 14.0000 24.2487i 0.494049 0.855718i
\(804\) −3.00000 + 1.73205i −0.105802 + 0.0610847i
\(805\) 0 0
\(806\) −4.00000 + 6.92820i −0.140894 + 0.244036i
\(807\) −10.5000 + 6.06218i −0.369618 + 0.213399i
\(808\) 11.0000 0.386979
\(809\) −9.00000 + 15.5885i −0.316423 + 0.548061i −0.979739 0.200279i \(-0.935815\pi\)
0.663316 + 0.748340i \(0.269149\pi\)
\(810\) 4.50000 + 7.79423i 0.158114 + 0.273861i
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) 24.2487i 0.850439i
\(814\) 12.0000 0.420600
\(815\) −3.00000 5.19615i −0.105085 0.182013i
\(816\) 0 0
\(817\) 28.0000 48.4974i 0.979596 1.69671i
\(818\) 24.0000 0.839140
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) 16.0000 27.7128i 0.558404 0.967184i −0.439226 0.898377i \(-0.644747\pi\)
0.997630 0.0688073i \(-0.0219194\pi\)
\(822\) −3.00000 + 1.73205i −0.104637 + 0.0604122i
\(823\) 22.0000 + 38.1051i 0.766872 + 1.32826i 0.939251 + 0.343230i \(0.111521\pi\)
−0.172379 + 0.985031i \(0.555146\pi\)
\(824\) −8.00000 −0.278693
\(825\) −12.0000 6.92820i −0.417786 0.241209i
\(826\) 0 0
\(827\) 30.0000 1.04320 0.521601 0.853189i \(-0.325335\pi\)
0.521601 + 0.853189i \(0.325335\pi\)
\(828\) 4.50000 7.79423i 0.156386 0.270868i
\(829\) −7.00000 + 12.1244i −0.243120 + 0.421096i −0.961601 0.274450i \(-0.911504\pi\)
0.718481 + 0.695546i \(0.244838\pi\)
\(830\) 12.0000 0.416526
\(831\) 3.00000 + 1.73205i 0.104069 + 0.0600842i
\(832\) 1.00000 1.73205i 0.0346688 0.0600481i
\(833\) 0 0
\(834\) 15.5885i 0.539784i
\(835\) −1.00000 + 1.73205i −0.0346064 + 0.0599401i
\(836\) 7.00000 12.1244i 0.242100 0.419330i
\(837\) 18.0000 10.3923i 0.622171 0.359211i
\(838\) −2.50000 4.33013i −0.0863611 0.149582i
\(839\) −15.0000 25.9808i −0.517858 0.896956i −0.999785 0.0207443i \(-0.993396\pi\)
0.481927 0.876211i \(-0.339937\pi\)
\(840\) 0 0
\(841\) −17.5000 + 30.3109i −0.603448 + 1.04520i
\(842\) −36.0000 −1.24064
\(843\) 25.9808i 0.894825i
\(844\) −22.0000 −0.757271
\(845\) −4.50000 7.79423i −0.154805 0.268130i
\(846\) 12.0000 20.7846i 0.412568 0.714590i
\(847\) 0 0
\(848\) −2.00000 3.46410i −0.0686803 0.118958i
\(849\) 43.3013i 1.48610i
\(850\) 0 0
\(851\) 9.00000 + 15.5885i 0.308516 + 0.534365i
\(852\) 8.66025i 0.296695i
\(853\) −18.5000 32.0429i −0.633428 1.09713i −0.986846 0.161664i \(-0.948314\pi\)
0.353418 0.935466i \(-0.385019\pi\)
\(854\) 0 0
\(855\) −10.5000 + 18.1865i −0.359092 + 0.621966i
\(856\) −4.00000 6.92820i −0.136717 0.236801i
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 6.92820i 0.236525i
\(859\) −36.0000 −1.22830 −0.614152 0.789188i \(-0.710502\pi\)
−0.614152 + 0.789188i \(0.710502\pi\)
\(860\) −4.00000 + 6.92820i −0.136399 + 0.236250i
\(861\) 0 0
\(862\) −16.0000 27.7128i −0.544962 0.943902i
\(863\) −28.5000 49.3634i −0.970151 1.68035i −0.695087 0.718925i \(-0.744634\pi\)
−0.275064 0.961426i \(-0.588699\pi\)
\(864\) −4.50000 + 2.59808i −0.153093 + 0.0883883i
\(865\) 11.0000 19.0526i 0.374011 0.647806i
\(866\) −14.0000 + 24.2487i −0.475739 + 0.824005i
\(867\) 29.4449i 1.00000i
\(868\) 0 0
\(869\) −11.0000 + 19.0526i −0.373149 + 0.646314i
\(870\) −12.0000 6.92820i −0.406838 0.234888i
\(871\) 4.00000 0.135535
\(872\) −2.00000 + 3.46410i −0.0677285 + 0.117309i
\(873\) 3.00000 5.19615i 0.101535 0.175863i
\(874\) 21.0000 0.710336
\(875\) 0 0
\(876\) −21.0000 12.1244i −0.709524 0.409644i
\(877\) 24.0000 0.810422 0.405211 0.914223i \(-0.367198\pi\)
0.405211 + 0.914223i \(0.367198\pi\)
\(878\) −18.0000 31.1769i −0.607471 1.05217i
\(879\) −13.5000 + 7.79423i −0.455344 + 0.262893i
\(880\) −1.00000 + 1.73205i −0.0337100 + 0.0583874i
\(881\) −28.0000 −0.943344 −0.471672 0.881774i \(-0.656349\pi\)
−0.471672 + 0.881774i \(0.656349\pi\)
\(882\) 0 0
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) 0 0
\(885\) 6.92820i 0.232889i
\(886\) −12.0000 20.7846i −0.403148 0.698273i
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 10.3923i 0.348743i
\(889\) 0 0
\(890\) 14.0000 0.469281
\(891\) 9.00000 15.5885i 0.301511 0.522233i
\(892\) −1.00000 + 1.73205i −0.0334825 + 0.0579934i
\(893\) 56.0000 1.87397
\(894\) 15.0000 8.66025i 0.501675 0.289642i
\(895\) −12.0000 + 20.7846i −0.401116 + 0.694753i
\(896\) 0 0
\(897\) −9.00000 + 5.19615i −0.300501 + 0.173494i
\(898\) −4.50000 + 7.79423i −0.150167 + 0.260097i
\(899\) −16.0000 + 27.7128i −0.533630 + 0.924274i
\(900\) −6.00000 + 10.3923i −0.200000 + 0.346410i
\(901\) 0 0
\(902\) 12.0000 + 20.7846i 0.399556 + 0.692052i
\(903\) 0 0
\(904\) 0.500000 0.866025i 0.0166298 0.0288036i
\(905\) 7.00000 0.232688
\(906\) 28.5000 16.4545i 0.946849 0.546664i
\(907\) −2.00000 −0.0664089 −0.0332045 0.999449i \(-0.510571\pi\)
−0.0332045 + 0.999449i \(0.510571\pi\)
\(908\) 8.50000 + 14.7224i 0.282082 + 0.488581i
\(909\) 16.5000 + 28.5788i 0.547270 + 0.947900i
\(910\) 0 0
\(911\) 0.500000 + 0.866025i 0.0165657 + 0.0286927i 0.874189 0.485585i \(-0.161393\pi\)
−0.857624 + 0.514278i \(0.828060\pi\)
\(912\) −10.5000 6.06218i −0.347690 0.200739i
\(913\) −12.0000 20.7846i −0.397142 0.687870i
\(914\) −8.50000 14.7224i −0.281155 0.486975i
\(915\) 19.5000 11.2583i 0.644650 0.372189i
\(916\) −6.50000 11.2583i −0.214766 0.371986i
\(917\) 0 0
\(918\) 0 0
\(919\) −7.50000 12.9904i −0.247402 0.428513i 0.715402 0.698713i \(-0.246244\pi\)
−0.962804 + 0.270200i \(0.912910\pi\)
\(920\) −3.00000 −0.0989071
\(921\) 10.5000 + 6.06218i 0.345987 + 0.199756i
\(922\) 9.00000 0.296399
\(923\) −5.00000 + 8.66025i −0.164577 + 0.285056i
\(924\) 0 0
\(925\) −12.0000 20.7846i −0.394558 0.683394i
\(926\) 0.500000 + 0.866025i 0.0164310 + 0.0284594i
\(927\) −12.0000 20.7846i −0.394132 0.682656i
\(928\) 4.00000 6.92820i 0.131306 0.227429i
\(929\) 3.00000 5.19615i 0.0984268 0.170480i −0.812607 0.582812i \(-0.801952\pi\)
0.911034 + 0.412332i \(0.135286\pi\)
\(930\) −6.00000 3.46410i −0.196748 0.113592i
\(931\) 0 0
\(932\) −0.500000 + 0.866025i −0.0163780 + 0.0283676i
\(933\) 17.3205i 0.567048i
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) 6.00000 0.196116
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) −9.00000 + 5.19615i −0.293704 + 0.169570i
\(940\) −8.00000 −0.260931
\(941\) −1.50000 2.59808i −0.0488986 0.0846949i 0.840540 0.541749i \(-0.182238\pi\)
−0.889439 + 0.457054i \(0.848904\pi\)
\(942\) 16.5000 + 9.52628i 0.537599 + 0.310383i
\(943\) −18.0000 + 31.1769i −0.586161 + 1.01526i
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) −5.00000 + 8.66025i −0.162478 + 0.281420i −0.935757 0.352646i \(-0.885282\pi\)
0.773279 + 0.634066i \(0.218615\pi\)
\(948\) 16.5000 + 9.52628i 0.535895 + 0.309399i
\(949\) 14.0000 + 24.2487i 0.454459 + 0.787146i
\(950\) −28.0000 −0.908440
\(951\) 36.0000 20.7846i 1.16738 0.673987i
\(952\) 0 0
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 6.00000 10.3923i 0.194257 0.336463i
\(955\) 1.50000 2.59808i 0.0485389 0.0840718i
\(956\) −15.0000 −0.485135
\(957\) 27.7128i 0.895828i
\(958\) 12.0000 20.7846i 0.387702 0.671520i
\(959\) 0 0
\(960\) 1.50000 + 0.866025i 0.0484123 + 0.0279508i
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) −6.00000 + 10.3923i −0.193448 + 0.335061i
\(963\) 12.0000 20.7846i 0.386695 0.669775i
\(964\) 5.00000 + 8.66025i 0.161039 + 0.278928i
\(965\) 2.50000 + 4.33013i 0.0804778 + 0.139392i
\(966\) 0 0
\(967\) −6.50000 + 11.2583i −0.209026 + 0.362043i −0.951408 0.307933i \(-0.900363\pi\)
0.742382 + 0.669977i \(0.233696\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) −2.00000 −0.0642161
\(971\) −17.5000 30.3109i −0.561602 0.972723i −0.997357 0.0726575i \(-0.976852\pi\)
0.435755 0.900065i \(-0.356481\pi\)
\(972\) −13.5000 7.79423i −0.433013 0.250000i
\(973\) 0 0
\(974\) −12.5000 21.6506i −0.400526 0.693731i
\(975\) 12.0000 6.92820i 0.384308 0.221880i
\(976\) 6.50000 + 11.2583i 0.208060 + 0.360370i
\(977\) 1.00000 + 1.73205i 0.0319928 + 0.0554132i 0.881579 0.472037i \(-0.156481\pi\)
−0.849586 + 0.527451i \(0.823148\pi\)
\(978\) 9.00000 + 5.19615i 0.287788 + 0.166155i
\(979\) −14.0000 24.2487i −0.447442 0.774992i
\(980\) 0 0
\(981\) −12.0000 −0.383131
\(982\) −3.00000 5.19615i −0.0957338 0.165816i
\(983\) 32.0000 1.02064 0.510321 0.859984i \(-0.329527\pi\)
0.510321 + 0.859984i \(0.329527\pi\)
\(984\) 18.0000 10.3923i 0.573819 0.331295i
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 0 0
\(988\) 7.00000 + 12.1244i 0.222700 + 0.385727i
\(989\) 12.0000 + 20.7846i 0.381578 + 0.660912i
\(990\) −6.00000 −0.190693
\(991\) −16.0000 + 27.7128i −0.508257 + 0.880327i 0.491698 + 0.870766i \(0.336377\pi\)
−0.999954 + 0.00956046i \(0.996957\pi\)
\(992\) 2.00000 3.46410i 0.0635001 0.109985i
\(993\) −6.00000 + 3.46410i −0.190404 + 0.109930i
\(994\) 0 0
\(995\) 7.00000 12.1244i 0.221915 0.384368i
\(996\) −18.0000 + 10.3923i −0.570352 + 0.329293i
\(997\) −17.0000 −0.538395 −0.269198 0.963085i \(-0.586759\pi\)
−0.269198 + 0.963085i \(0.586759\pi\)
\(998\) −12.0000 + 20.7846i −0.379853 + 0.657925i
\(999\) 27.0000 15.5885i 0.854242 0.493197i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.h.a.67.1 2
3.2 odd 2 2646.2.h.j.361.1 2
7.2 even 3 882.2.e.j.373.1 2
7.3 odd 6 882.2.f.b.589.1 yes 2
7.4 even 3 882.2.f.c.589.1 yes 2
7.5 odd 6 882.2.e.f.373.1 2
7.6 odd 2 882.2.h.d.67.1 2
9.2 odd 6 2646.2.e.a.2125.1 2
9.7 even 3 882.2.e.j.655.1 2
21.2 odd 6 2646.2.e.a.1549.1 2
21.5 even 6 2646.2.e.d.1549.1 2
21.11 odd 6 2646.2.f.f.1765.1 2
21.17 even 6 2646.2.f.h.1765.1 2
21.20 even 2 2646.2.h.g.361.1 2
63.2 odd 6 2646.2.h.j.667.1 2
63.4 even 3 7938.2.a.v.1.1 1
63.11 odd 6 2646.2.f.f.883.1 2
63.16 even 3 inner 882.2.h.a.79.1 2
63.20 even 6 2646.2.e.d.2125.1 2
63.25 even 3 882.2.f.c.295.1 yes 2
63.31 odd 6 7938.2.a.ba.1.1 1
63.32 odd 6 7938.2.a.k.1.1 1
63.34 odd 6 882.2.e.f.655.1 2
63.38 even 6 2646.2.f.h.883.1 2
63.47 even 6 2646.2.h.g.667.1 2
63.52 odd 6 882.2.f.b.295.1 2
63.59 even 6 7938.2.a.f.1.1 1
63.61 odd 6 882.2.h.d.79.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.f.373.1 2 7.5 odd 6
882.2.e.f.655.1 2 63.34 odd 6
882.2.e.j.373.1 2 7.2 even 3
882.2.e.j.655.1 2 9.7 even 3
882.2.f.b.295.1 2 63.52 odd 6
882.2.f.b.589.1 yes 2 7.3 odd 6
882.2.f.c.295.1 yes 2 63.25 even 3
882.2.f.c.589.1 yes 2 7.4 even 3
882.2.h.a.67.1 2 1.1 even 1 trivial
882.2.h.a.79.1 2 63.16 even 3 inner
882.2.h.d.67.1 2 7.6 odd 2
882.2.h.d.79.1 2 63.61 odd 6
2646.2.e.a.1549.1 2 21.2 odd 6
2646.2.e.a.2125.1 2 9.2 odd 6
2646.2.e.d.1549.1 2 21.5 even 6
2646.2.e.d.2125.1 2 63.20 even 6
2646.2.f.f.883.1 2 63.11 odd 6
2646.2.f.f.1765.1 2 21.11 odd 6
2646.2.f.h.883.1 2 63.38 even 6
2646.2.f.h.1765.1 2 21.17 even 6
2646.2.h.g.361.1 2 21.20 even 2
2646.2.h.g.667.1 2 63.47 even 6
2646.2.h.j.361.1 2 3.2 odd 2
2646.2.h.j.667.1 2 63.2 odd 6
7938.2.a.f.1.1 1 63.59 even 6
7938.2.a.k.1.1 1 63.32 odd 6
7938.2.a.v.1.1 1 63.4 even 3
7938.2.a.ba.1.1 1 63.31 odd 6