Properties

Label 882.2.e.f.655.1
Level $882$
Weight $2$
Character 882.655
Analytic conductor $7.043$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(373,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.373"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-3,2,-1,-3,0,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 655.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 882.655
Dual form 882.2.e.f.373.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-1.50000 - 0.866025i) q^{3} +1.00000 q^{4} +(-0.500000 + 0.866025i) q^{5} +(-1.50000 - 0.866025i) q^{6} +1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(-0.500000 + 0.866025i) q^{10} +(1.00000 + 1.73205i) q^{11} +(-1.50000 - 0.866025i) q^{12} +(-1.00000 - 1.73205i) q^{13} +(1.50000 - 0.866025i) q^{15} +1.00000 q^{16} +(1.50000 + 2.59808i) q^{18} +(3.50000 + 6.06218i) q^{19} +(-0.500000 + 0.866025i) q^{20} +(1.00000 + 1.73205i) q^{22} +(-1.50000 + 2.59808i) q^{23} +(-1.50000 - 0.866025i) q^{24} +(2.00000 + 3.46410i) q^{25} +(-1.00000 - 1.73205i) q^{26} -5.19615i q^{27} +(4.00000 - 6.92820i) q^{29} +(1.50000 - 0.866025i) q^{30} +4.00000 q^{31} +1.00000 q^{32} -3.46410i q^{33} +(1.50000 + 2.59808i) q^{36} +(3.00000 + 5.19615i) q^{37} +(3.50000 + 6.06218i) q^{38} +3.46410i q^{39} +(-0.500000 + 0.866025i) q^{40} +(6.00000 + 10.3923i) q^{41} +(4.00000 - 6.92820i) q^{43} +(1.00000 + 1.73205i) q^{44} -3.00000 q^{45} +(-1.50000 + 2.59808i) q^{46} -8.00000 q^{47} +(-1.50000 - 0.866025i) q^{48} +(2.00000 + 3.46410i) q^{50} +(-1.00000 - 1.73205i) q^{52} +(-2.00000 + 3.46410i) q^{53} -5.19615i q^{54} -2.00000 q^{55} -12.1244i q^{57} +(4.00000 - 6.92820i) q^{58} +4.00000 q^{59} +(1.50000 - 0.866025i) q^{60} +13.0000 q^{61} +4.00000 q^{62} +1.00000 q^{64} +2.00000 q^{65} -3.46410i q^{66} -2.00000 q^{67} +(4.50000 - 2.59808i) q^{69} -5.00000 q^{71} +(1.50000 + 2.59808i) q^{72} +(7.00000 - 12.1244i) q^{73} +(3.00000 + 5.19615i) q^{74} -6.92820i q^{75} +(3.50000 + 6.06218i) q^{76} +3.46410i q^{78} -11.0000 q^{79} +(-0.500000 + 0.866025i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(6.00000 + 10.3923i) q^{82} +(-6.00000 + 10.3923i) q^{83} +(4.00000 - 6.92820i) q^{86} +(-12.0000 + 6.92820i) q^{87} +(1.00000 + 1.73205i) q^{88} +(-7.00000 - 12.1244i) q^{89} -3.00000 q^{90} +(-1.50000 + 2.59808i) q^{92} +(-6.00000 - 3.46410i) q^{93} -8.00000 q^{94} -7.00000 q^{95} +(-1.50000 - 0.866025i) q^{96} +(1.00000 - 1.73205i) q^{97} +(-3.00000 + 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 3 q^{3} + 2 q^{4} - q^{5} - 3 q^{6} + 2 q^{8} + 3 q^{9} - q^{10} + 2 q^{11} - 3 q^{12} - 2 q^{13} + 3 q^{15} + 2 q^{16} + 3 q^{18} + 7 q^{19} - q^{20} + 2 q^{22} - 3 q^{23} - 3 q^{24}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.50000 0.866025i −0.866025 0.500000i
\(4\) 1.00000 0.500000
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) −1.50000 0.866025i −0.612372 0.353553i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) −1.50000 0.866025i −0.433013 0.250000i
\(13\) −1.00000 1.73205i −0.277350 0.480384i 0.693375 0.720577i \(-0.256123\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0 0
\(15\) 1.50000 0.866025i 0.387298 0.223607i
\(16\) 1.00000 0.250000
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 1.50000 + 2.59808i 0.353553 + 0.612372i
\(19\) 3.50000 + 6.06218i 0.802955 + 1.39076i 0.917663 + 0.397360i \(0.130073\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 0 0
\(22\) 1.00000 + 1.73205i 0.213201 + 0.369274i
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) −1.50000 0.866025i −0.306186 0.176777i
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) −1.00000 1.73205i −0.196116 0.339683i
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) 4.00000 6.92820i 0.742781 1.28654i −0.208443 0.978035i \(-0.566840\pi\)
0.951224 0.308500i \(-0.0998271\pi\)
\(30\) 1.50000 0.866025i 0.273861 0.158114i
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000 0.176777
\(33\) 3.46410i 0.603023i
\(34\) 0 0
\(35\) 0 0
\(36\) 1.50000 + 2.59808i 0.250000 + 0.433013i
\(37\) 3.00000 + 5.19615i 0.493197 + 0.854242i 0.999969 0.00783774i \(-0.00249486\pi\)
−0.506772 + 0.862080i \(0.669162\pi\)
\(38\) 3.50000 + 6.06218i 0.567775 + 0.983415i
\(39\) 3.46410i 0.554700i
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) 6.00000 + 10.3923i 0.937043 + 1.62301i 0.770950 + 0.636895i \(0.219782\pi\)
0.166092 + 0.986110i \(0.446885\pi\)
\(42\) 0 0
\(43\) 4.00000 6.92820i 0.609994 1.05654i −0.381246 0.924473i \(-0.624505\pi\)
0.991241 0.132068i \(-0.0421616\pi\)
\(44\) 1.00000 + 1.73205i 0.150756 + 0.261116i
\(45\) −3.00000 −0.447214
\(46\) −1.50000 + 2.59808i −0.221163 + 0.383065i
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) −1.50000 0.866025i −0.216506 0.125000i
\(49\) 0 0
\(50\) 2.00000 + 3.46410i 0.282843 + 0.489898i
\(51\) 0 0
\(52\) −1.00000 1.73205i −0.138675 0.240192i
\(53\) −2.00000 + 3.46410i −0.274721 + 0.475831i −0.970065 0.242846i \(-0.921919\pi\)
0.695344 + 0.718677i \(0.255252\pi\)
\(54\) 5.19615i 0.707107i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 12.1244i 1.60591i
\(58\) 4.00000 6.92820i 0.525226 0.909718i
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 1.50000 0.866025i 0.193649 0.111803i
\(61\) 13.0000 1.66448 0.832240 0.554416i \(-0.187058\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 3.46410i 0.426401i
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) 4.50000 2.59808i 0.541736 0.312772i
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 1.50000 + 2.59808i 0.176777 + 0.306186i
\(73\) 7.00000 12.1244i 0.819288 1.41905i −0.0869195 0.996215i \(-0.527702\pi\)
0.906208 0.422833i \(-0.138964\pi\)
\(74\) 3.00000 + 5.19615i 0.348743 + 0.604040i
\(75\) 6.92820i 0.800000i
\(76\) 3.50000 + 6.06218i 0.401478 + 0.695379i
\(77\) 0 0
\(78\) 3.46410i 0.392232i
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 6.00000 + 10.3923i 0.662589 + 1.14764i
\(83\) −6.00000 + 10.3923i −0.658586 + 1.14070i 0.322396 + 0.946605i \(0.395512\pi\)
−0.980982 + 0.194099i \(0.937822\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 6.92820i 0.431331 0.747087i
\(87\) −12.0000 + 6.92820i −1.28654 + 0.742781i
\(88\) 1.00000 + 1.73205i 0.106600 + 0.184637i
\(89\) −7.00000 12.1244i −0.741999 1.28518i −0.951584 0.307389i \(-0.900545\pi\)
0.209585 0.977790i \(-0.432789\pi\)
\(90\) −3.00000 −0.316228
\(91\) 0 0
\(92\) −1.50000 + 2.59808i −0.156386 + 0.270868i
\(93\) −6.00000 3.46410i −0.622171 0.359211i
\(94\) −8.00000 −0.825137
\(95\) −7.00000 −0.718185
\(96\) −1.50000 0.866025i −0.153093 0.0883883i
\(97\) 1.00000 1.73205i 0.101535 0.175863i −0.810782 0.585348i \(-0.800958\pi\)
0.912317 + 0.409484i \(0.134291\pi\)
\(98\) 0 0
\(99\) −3.00000 + 5.19615i −0.301511 + 0.522233i
\(100\) 2.00000 + 3.46410i 0.200000 + 0.346410i
\(101\) 5.50000 + 9.52628i 0.547270 + 0.947900i 0.998460 + 0.0554722i \(0.0176664\pi\)
−0.451190 + 0.892428i \(0.649000\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) −1.00000 1.73205i −0.0980581 0.169842i
\(105\) 0 0
\(106\) −2.00000 + 3.46410i −0.194257 + 0.336463i
\(107\) −4.00000 6.92820i −0.386695 0.669775i 0.605308 0.795991i \(-0.293050\pi\)
−0.992003 + 0.126217i \(0.959717\pi\)
\(108\) 5.19615i 0.500000i
\(109\) −2.00000 + 3.46410i −0.191565 + 0.331801i −0.945769 0.324840i \(-0.894690\pi\)
0.754204 + 0.656640i \(0.228023\pi\)
\(110\) −2.00000 −0.190693
\(111\) 10.3923i 0.986394i
\(112\) 0 0
\(113\) 0.500000 + 0.866025i 0.0470360 + 0.0814688i 0.888585 0.458712i \(-0.151689\pi\)
−0.841549 + 0.540181i \(0.818356\pi\)
\(114\) 12.1244i 1.13555i
\(115\) −1.50000 2.59808i −0.139876 0.242272i
\(116\) 4.00000 6.92820i 0.371391 0.643268i
\(117\) 3.00000 5.19615i 0.277350 0.480384i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 1.50000 0.866025i 0.136931 0.0790569i
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 13.0000 1.17696
\(123\) 20.7846i 1.87409i
\(124\) 4.00000 0.359211
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 1.00000 0.0883883
\(129\) −12.0000 + 6.92820i −1.05654 + 0.609994i
\(130\) 2.00000 0.175412
\(131\) −7.50000 + 12.9904i −0.655278 + 1.13497i 0.326546 + 0.945181i \(0.394115\pi\)
−0.981824 + 0.189794i \(0.939218\pi\)
\(132\) 3.46410i 0.301511i
\(133\) 0 0
\(134\) −2.00000 −0.172774
\(135\) 4.50000 + 2.59808i 0.387298 + 0.223607i
\(136\) 0 0
\(137\) 1.00000 + 1.73205i 0.0854358 + 0.147979i 0.905577 0.424182i \(-0.139438\pi\)
−0.820141 + 0.572161i \(0.806105\pi\)
\(138\) 4.50000 2.59808i 0.383065 0.221163i
\(139\) −4.50000 7.79423i −0.381685 0.661098i 0.609618 0.792695i \(-0.291323\pi\)
−0.991303 + 0.131597i \(0.957989\pi\)
\(140\) 0 0
\(141\) 12.0000 + 6.92820i 1.01058 + 0.583460i
\(142\) −5.00000 −0.419591
\(143\) 2.00000 3.46410i 0.167248 0.289683i
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) 4.00000 + 6.92820i 0.332182 + 0.575356i
\(146\) 7.00000 12.1244i 0.579324 1.00342i
\(147\) 0 0
\(148\) 3.00000 + 5.19615i 0.246598 + 0.427121i
\(149\) −5.00000 + 8.66025i −0.409616 + 0.709476i −0.994847 0.101391i \(-0.967671\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(150\) 6.92820i 0.565685i
\(151\) −9.50000 16.4545i −0.773099 1.33905i −0.935857 0.352381i \(-0.885372\pi\)
0.162758 0.986666i \(-0.447961\pi\)
\(152\) 3.50000 + 6.06218i 0.283887 + 0.491708i
\(153\) 0 0
\(154\) 0 0
\(155\) −2.00000 + 3.46410i −0.160644 + 0.278243i
\(156\) 3.46410i 0.277350i
\(157\) 11.0000 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(158\) −11.0000 −0.875113
\(159\) 6.00000 3.46410i 0.475831 0.274721i
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) 0 0
\(162\) −4.50000 + 7.79423i −0.353553 + 0.612372i
\(163\) 3.00000 + 5.19615i 0.234978 + 0.406994i 0.959266 0.282503i \(-0.0911648\pi\)
−0.724288 + 0.689497i \(0.757831\pi\)
\(164\) 6.00000 + 10.3923i 0.468521 + 0.811503i
\(165\) 3.00000 + 1.73205i 0.233550 + 0.134840i
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) −1.00000 1.73205i −0.0773823 0.134030i 0.824737 0.565516i \(-0.191323\pi\)
−0.902120 + 0.431486i \(0.857990\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) −10.5000 + 18.1865i −0.802955 + 1.39076i
\(172\) 4.00000 6.92820i 0.304997 0.528271i
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) −12.0000 + 6.92820i −0.909718 + 0.525226i
\(175\) 0 0
\(176\) 1.00000 + 1.73205i 0.0753778 + 0.130558i
\(177\) −6.00000 3.46410i −0.450988 0.260378i
\(178\) −7.00000 12.1244i −0.524672 0.908759i
\(179\) 12.0000 20.7846i 0.896922 1.55351i 0.0655145 0.997852i \(-0.479131\pi\)
0.831408 0.555663i \(-0.187536\pi\)
\(180\) −3.00000 −0.223607
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) 0 0
\(183\) −19.5000 11.2583i −1.44148 0.832240i
\(184\) −1.50000 + 2.59808i −0.110581 + 0.191533i
\(185\) −6.00000 −0.441129
\(186\) −6.00000 3.46410i −0.439941 0.254000i
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −7.00000 −0.507833
\(191\) 3.00000 0.217072 0.108536 0.994092i \(-0.465384\pi\)
0.108536 + 0.994092i \(0.465384\pi\)
\(192\) −1.50000 0.866025i −0.108253 0.0625000i
\(193\) 5.00000 0.359908 0.179954 0.983675i \(-0.442405\pi\)
0.179954 + 0.983675i \(0.442405\pi\)
\(194\) 1.00000 1.73205i 0.0717958 0.124354i
\(195\) −3.00000 1.73205i −0.214834 0.124035i
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) −3.00000 + 5.19615i −0.213201 + 0.369274i
\(199\) 7.00000 12.1244i 0.496217 0.859473i −0.503774 0.863836i \(-0.668055\pi\)
0.999990 + 0.00436292i \(0.00138876\pi\)
\(200\) 2.00000 + 3.46410i 0.141421 + 0.244949i
\(201\) 3.00000 + 1.73205i 0.211604 + 0.122169i
\(202\) 5.50000 + 9.52628i 0.386979 + 0.670267i
\(203\) 0 0
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) −4.00000 + 6.92820i −0.278693 + 0.482711i
\(207\) −9.00000 −0.625543
\(208\) −1.00000 1.73205i −0.0693375 0.120096i
\(209\) −7.00000 + 12.1244i −0.484200 + 0.838659i
\(210\) 0 0
\(211\) 11.0000 + 19.0526i 0.757271 + 1.31163i 0.944237 + 0.329266i \(0.106801\pi\)
−0.186966 + 0.982366i \(0.559865\pi\)
\(212\) −2.00000 + 3.46410i −0.137361 + 0.237915i
\(213\) 7.50000 + 4.33013i 0.513892 + 0.296695i
\(214\) −4.00000 6.92820i −0.273434 0.473602i
\(215\) 4.00000 + 6.92820i 0.272798 + 0.472500i
\(216\) 5.19615i 0.353553i
\(217\) 0 0
\(218\) −2.00000 + 3.46410i −0.135457 + 0.234619i
\(219\) −21.0000 + 12.1244i −1.41905 + 0.819288i
\(220\) −2.00000 −0.134840
\(221\) 0 0
\(222\) 10.3923i 0.697486i
\(223\) 1.00000 1.73205i 0.0669650 0.115987i −0.830599 0.556871i \(-0.812002\pi\)
0.897564 + 0.440884i \(0.145335\pi\)
\(224\) 0 0
\(225\) −6.00000 + 10.3923i −0.400000 + 0.692820i
\(226\) 0.500000 + 0.866025i 0.0332595 + 0.0576072i
\(227\) −8.50000 14.7224i −0.564165 0.977162i −0.997127 0.0757500i \(-0.975865\pi\)
0.432962 0.901412i \(-0.357468\pi\)
\(228\) 12.1244i 0.802955i
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) −1.50000 2.59808i −0.0989071 0.171312i
\(231\) 0 0
\(232\) 4.00000 6.92820i 0.262613 0.454859i
\(233\) −0.500000 0.866025i −0.0327561 0.0567352i 0.849183 0.528099i \(-0.177095\pi\)
−0.881939 + 0.471364i \(0.843762\pi\)
\(234\) 3.00000 5.19615i 0.196116 0.339683i
\(235\) 4.00000 6.92820i 0.260931 0.451946i
\(236\) 4.00000 0.260378
\(237\) 16.5000 + 9.52628i 1.07179 + 0.618798i
\(238\) 0 0
\(239\) 7.50000 + 12.9904i 0.485135 + 0.840278i 0.999854 0.0170808i \(-0.00543724\pi\)
−0.514719 + 0.857359i \(0.672104\pi\)
\(240\) 1.50000 0.866025i 0.0968246 0.0559017i
\(241\) −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i \(-0.271048\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) 3.50000 6.06218i 0.224989 0.389692i
\(243\) 13.5000 7.79423i 0.866025 0.500000i
\(244\) 13.0000 0.832240
\(245\) 0 0
\(246\) 20.7846i 1.32518i
\(247\) 7.00000 12.1244i 0.445399 0.771454i
\(248\) 4.00000 0.254000
\(249\) 18.0000 10.3923i 1.14070 0.658586i
\(250\) −9.00000 −0.569210
\(251\) 7.00000 0.441836 0.220918 0.975292i \(-0.429095\pi\)
0.220918 + 0.975292i \(0.429095\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) −19.0000 −1.19217
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.00000 + 6.92820i −0.249513 + 0.432169i −0.963391 0.268101i \(-0.913604\pi\)
0.713878 + 0.700270i \(0.246937\pi\)
\(258\) −12.0000 + 6.92820i −0.747087 + 0.431331i
\(259\) 0 0
\(260\) 2.00000 0.124035
\(261\) 24.0000 1.48556
\(262\) −7.50000 + 12.9904i −0.463352 + 0.802548i
\(263\) −9.50000 16.4545i −0.585795 1.01463i −0.994776 0.102084i \(-0.967449\pi\)
0.408981 0.912543i \(-0.365884\pi\)
\(264\) 3.46410i 0.213201i
\(265\) −2.00000 3.46410i −0.122859 0.212798i
\(266\) 0 0
\(267\) 24.2487i 1.48400i
\(268\) −2.00000 −0.122169
\(269\) −3.50000 + 6.06218i −0.213399 + 0.369618i −0.952776 0.303674i \(-0.901787\pi\)
0.739377 + 0.673291i \(0.235120\pi\)
\(270\) 4.50000 + 2.59808i 0.273861 + 0.158114i
\(271\) −7.00000 12.1244i −0.425220 0.736502i 0.571221 0.820796i \(-0.306470\pi\)
−0.996441 + 0.0842940i \(0.973137\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 1.00000 + 1.73205i 0.0604122 + 0.104637i
\(275\) −4.00000 + 6.92820i −0.241209 + 0.417786i
\(276\) 4.50000 2.59808i 0.270868 0.156386i
\(277\) 1.00000 + 1.73205i 0.0600842 + 0.104069i 0.894503 0.447062i \(-0.147530\pi\)
−0.834419 + 0.551131i \(0.814196\pi\)
\(278\) −4.50000 7.79423i −0.269892 0.467467i
\(279\) 6.00000 + 10.3923i 0.359211 + 0.622171i
\(280\) 0 0
\(281\) 7.50000 12.9904i 0.447412 0.774941i −0.550804 0.834634i \(-0.685679\pi\)
0.998217 + 0.0596933i \(0.0190123\pi\)
\(282\) 12.0000 + 6.92820i 0.714590 + 0.412568i
\(283\) 25.0000 1.48610 0.743048 0.669238i \(-0.233379\pi\)
0.743048 + 0.669238i \(0.233379\pi\)
\(284\) −5.00000 −0.296695
\(285\) 10.5000 + 6.06218i 0.621966 + 0.359092i
\(286\) 2.00000 3.46410i 0.118262 0.204837i
\(287\) 0 0
\(288\) 1.50000 + 2.59808i 0.0883883 + 0.153093i
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 4.00000 + 6.92820i 0.234888 + 0.406838i
\(291\) −3.00000 + 1.73205i −0.175863 + 0.101535i
\(292\) 7.00000 12.1244i 0.409644 0.709524i
\(293\) −4.50000 7.79423i −0.262893 0.455344i 0.704117 0.710084i \(-0.251343\pi\)
−0.967009 + 0.254741i \(0.918010\pi\)
\(294\) 0 0
\(295\) −2.00000 + 3.46410i −0.116445 + 0.201688i
\(296\) 3.00000 + 5.19615i 0.174371 + 0.302020i
\(297\) 9.00000 5.19615i 0.522233 0.301511i
\(298\) −5.00000 + 8.66025i −0.289642 + 0.501675i
\(299\) 6.00000 0.346989
\(300\) 6.92820i 0.400000i
\(301\) 0 0
\(302\) −9.50000 16.4545i −0.546664 0.946849i
\(303\) 19.0526i 1.09454i
\(304\) 3.50000 + 6.06218i 0.200739 + 0.347690i
\(305\) −6.50000 + 11.2583i −0.372189 + 0.644650i
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 0 0
\(309\) 12.0000 6.92820i 0.682656 0.394132i
\(310\) −2.00000 + 3.46410i −0.113592 + 0.196748i
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 3.46410i 0.196116i
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 11.0000 0.620766
\(315\) 0 0
\(316\) −11.0000 −0.618798
\(317\) 24.0000 1.34797 0.673987 0.738743i \(-0.264580\pi\)
0.673987 + 0.738743i \(0.264580\pi\)
\(318\) 6.00000 3.46410i 0.336463 0.194257i
\(319\) 16.0000 0.895828
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) 13.8564i 0.773389i
\(322\) 0 0
\(323\) 0 0
\(324\) −4.50000 + 7.79423i −0.250000 + 0.433013i
\(325\) 4.00000 6.92820i 0.221880 0.384308i
\(326\) 3.00000 + 5.19615i 0.166155 + 0.287788i
\(327\) 6.00000 3.46410i 0.331801 0.191565i
\(328\) 6.00000 + 10.3923i 0.331295 + 0.573819i
\(329\) 0 0
\(330\) 3.00000 + 1.73205i 0.165145 + 0.0953463i
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −6.00000 + 10.3923i −0.329293 + 0.570352i
\(333\) −9.00000 + 15.5885i −0.493197 + 0.854242i
\(334\) −1.00000 1.73205i −0.0547176 0.0947736i
\(335\) 1.00000 1.73205i 0.0546358 0.0946320i
\(336\) 0 0
\(337\) 11.0000 + 19.0526i 0.599208 + 1.03786i 0.992938 + 0.118633i \(0.0378512\pi\)
−0.393730 + 0.919226i \(0.628816\pi\)
\(338\) 4.50000 7.79423i 0.244768 0.423950i
\(339\) 1.73205i 0.0940721i
\(340\) 0 0
\(341\) 4.00000 + 6.92820i 0.216612 + 0.375183i
\(342\) −10.5000 + 18.1865i −0.567775 + 0.983415i
\(343\) 0 0
\(344\) 4.00000 6.92820i 0.215666 0.373544i
\(345\) 5.19615i 0.279751i
\(346\) −22.0000 −1.18273
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) −12.0000 + 6.92820i −0.643268 + 0.371391i
\(349\) 15.0000 25.9808i 0.802932 1.39072i −0.114747 0.993395i \(-0.536606\pi\)
0.917679 0.397324i \(-0.130061\pi\)
\(350\) 0 0
\(351\) −9.00000 + 5.19615i −0.480384 + 0.277350i
\(352\) 1.00000 + 1.73205i 0.0533002 + 0.0923186i
\(353\) −12.0000 20.7846i −0.638696 1.10625i −0.985719 0.168397i \(-0.946141\pi\)
0.347024 0.937856i \(-0.387192\pi\)
\(354\) −6.00000 3.46410i −0.318896 0.184115i
\(355\) 2.50000 4.33013i 0.132686 0.229819i
\(356\) −7.00000 12.1244i −0.370999 0.642590i
\(357\) 0 0
\(358\) 12.0000 20.7846i 0.634220 1.09850i
\(359\) −14.5000 25.1147i −0.765281 1.32551i −0.940098 0.340904i \(-0.889267\pi\)
0.174817 0.984601i \(-0.444067\pi\)
\(360\) −3.00000 −0.158114
\(361\) −15.0000 + 25.9808i −0.789474 + 1.36741i
\(362\) 7.00000 0.367912
\(363\) −10.5000 + 6.06218i −0.551107 + 0.318182i
\(364\) 0 0
\(365\) 7.00000 + 12.1244i 0.366397 + 0.634618i
\(366\) −19.5000 11.2583i −1.01928 0.588482i
\(367\) 16.0000 + 27.7128i 0.835193 + 1.44660i 0.893873 + 0.448320i \(0.147978\pi\)
−0.0586798 + 0.998277i \(0.518689\pi\)
\(368\) −1.50000 + 2.59808i −0.0781929 + 0.135434i
\(369\) −18.0000 + 31.1769i −0.937043 + 1.62301i
\(370\) −6.00000 −0.311925
\(371\) 0 0
\(372\) −6.00000 3.46410i −0.311086 0.179605i
\(373\) 16.0000 27.7128i 0.828449 1.43492i −0.0708063 0.997490i \(-0.522557\pi\)
0.899255 0.437425i \(-0.144109\pi\)
\(374\) 0 0
\(375\) 13.5000 + 7.79423i 0.697137 + 0.402492i
\(376\) −8.00000 −0.412568
\(377\) −16.0000 −0.824042
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) −7.00000 −0.359092
\(381\) 28.5000 + 16.4545i 1.46010 + 0.842989i
\(382\) 3.00000 0.153493
\(383\) 3.00000 5.19615i 0.153293 0.265511i −0.779143 0.626846i \(-0.784346\pi\)
0.932436 + 0.361335i \(0.117679\pi\)
\(384\) −1.50000 0.866025i −0.0765466 0.0441942i
\(385\) 0 0
\(386\) 5.00000 0.254493
\(387\) 24.0000 1.21999
\(388\) 1.00000 1.73205i 0.0507673 0.0879316i
\(389\) 15.0000 + 25.9808i 0.760530 + 1.31728i 0.942578 + 0.333987i \(0.108394\pi\)
−0.182047 + 0.983290i \(0.558272\pi\)
\(390\) −3.00000 1.73205i −0.151911 0.0877058i
\(391\) 0 0
\(392\) 0 0
\(393\) 22.5000 12.9904i 1.13497 0.655278i
\(394\) −12.0000 −0.604551
\(395\) 5.50000 9.52628i 0.276735 0.479319i
\(396\) −3.00000 + 5.19615i −0.150756 + 0.261116i
\(397\) −7.00000 12.1244i −0.351320 0.608504i 0.635161 0.772380i \(-0.280934\pi\)
−0.986481 + 0.163876i \(0.947600\pi\)
\(398\) 7.00000 12.1244i 0.350878 0.607739i
\(399\) 0 0
\(400\) 2.00000 + 3.46410i 0.100000 + 0.173205i
\(401\) −1.50000 + 2.59808i −0.0749064 + 0.129742i −0.901046 0.433724i \(-0.857199\pi\)
0.826139 + 0.563466i \(0.190532\pi\)
\(402\) 3.00000 + 1.73205i 0.149626 + 0.0863868i
\(403\) −4.00000 6.92820i −0.199254 0.345118i
\(404\) 5.50000 + 9.52628i 0.273635 + 0.473950i
\(405\) −4.50000 7.79423i −0.223607 0.387298i
\(406\) 0 0
\(407\) −6.00000 + 10.3923i −0.297409 + 0.515127i
\(408\) 0 0
\(409\) −24.0000 −1.18672 −0.593362 0.804936i \(-0.702200\pi\)
−0.593362 + 0.804936i \(0.702200\pi\)
\(410\) −12.0000 −0.592638
\(411\) 3.46410i 0.170872i
\(412\) −4.00000 + 6.92820i −0.197066 + 0.341328i
\(413\) 0 0
\(414\) −9.00000 −0.442326
\(415\) −6.00000 10.3923i −0.294528 0.510138i
\(416\) −1.00000 1.73205i −0.0490290 0.0849208i
\(417\) 15.5885i 0.763370i
\(418\) −7.00000 + 12.1244i −0.342381 + 0.593022i
\(419\) 2.50000 + 4.33013i 0.122133 + 0.211541i 0.920609 0.390487i \(-0.127693\pi\)
−0.798476 + 0.602027i \(0.794360\pi\)
\(420\) 0 0
\(421\) 18.0000 31.1769i 0.877266 1.51947i 0.0229375 0.999737i \(-0.492698\pi\)
0.854329 0.519733i \(-0.173969\pi\)
\(422\) 11.0000 + 19.0526i 0.535472 + 0.927464i
\(423\) −12.0000 20.7846i −0.583460 1.01058i
\(424\) −2.00000 + 3.46410i −0.0971286 + 0.168232i
\(425\) 0 0
\(426\) 7.50000 + 4.33013i 0.363376 + 0.209795i
\(427\) 0 0
\(428\) −4.00000 6.92820i −0.193347 0.334887i
\(429\) −6.00000 + 3.46410i −0.289683 + 0.167248i
\(430\) 4.00000 + 6.92820i 0.192897 + 0.334108i
\(431\) −16.0000 + 27.7128i −0.770693 + 1.33488i 0.166491 + 0.986043i \(0.446756\pi\)
−0.937184 + 0.348836i \(0.886577\pi\)
\(432\) 5.19615i 0.250000i
\(433\) −28.0000 −1.34559 −0.672797 0.739827i \(-0.734907\pi\)
−0.672797 + 0.739827i \(0.734907\pi\)
\(434\) 0 0
\(435\) 13.8564i 0.664364i
\(436\) −2.00000 + 3.46410i −0.0957826 + 0.165900i
\(437\) −21.0000 −1.00457
\(438\) −21.0000 + 12.1244i −1.00342 + 0.579324i
\(439\) −36.0000 −1.71819 −0.859093 0.511819i \(-0.828972\pi\)
−0.859093 + 0.511819i \(0.828972\pi\)
\(440\) −2.00000 −0.0953463
\(441\) 0 0
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 10.3923i 0.493197i
\(445\) 14.0000 0.663664
\(446\) 1.00000 1.73205i 0.0473514 0.0820150i
\(447\) 15.0000 8.66025i 0.709476 0.409616i
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) −6.00000 + 10.3923i −0.282843 + 0.489898i
\(451\) −12.0000 + 20.7846i −0.565058 + 0.978709i
\(452\) 0.500000 + 0.866025i 0.0235180 + 0.0407344i
\(453\) 32.9090i 1.54620i
\(454\) −8.50000 14.7224i −0.398925 0.690958i
\(455\) 0 0
\(456\) 12.1244i 0.567775i
\(457\) 17.0000 0.795226 0.397613 0.917553i \(-0.369839\pi\)
0.397613 + 0.917553i \(0.369839\pi\)
\(458\) 6.50000 11.2583i 0.303725 0.526067i
\(459\) 0 0
\(460\) −1.50000 2.59808i −0.0699379 0.121136i
\(461\) 4.50000 7.79423i 0.209586 0.363013i −0.741998 0.670402i \(-0.766122\pi\)
0.951584 + 0.307388i \(0.0994551\pi\)
\(462\) 0 0
\(463\) 0.500000 + 0.866025i 0.0232370 + 0.0402476i 0.877410 0.479741i \(-0.159269\pi\)
−0.854173 + 0.519989i \(0.825936\pi\)
\(464\) 4.00000 6.92820i 0.185695 0.321634i
\(465\) 6.00000 3.46410i 0.278243 0.160644i
\(466\) −0.500000 0.866025i −0.0231621 0.0401179i
\(467\) 14.0000 + 24.2487i 0.647843 + 1.12210i 0.983637 + 0.180161i \(0.0576619\pi\)
−0.335794 + 0.941935i \(0.609005\pi\)
\(468\) 3.00000 5.19615i 0.138675 0.240192i
\(469\) 0 0
\(470\) 4.00000 6.92820i 0.184506 0.319574i
\(471\) −16.5000 9.52628i −0.760280 0.438948i
\(472\) 4.00000 0.184115
\(473\) 16.0000 0.735681
\(474\) 16.5000 + 9.52628i 0.757870 + 0.437557i
\(475\) −14.0000 + 24.2487i −0.642364 + 1.11261i
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) 7.50000 + 12.9904i 0.343042 + 0.594166i
\(479\) −12.0000 20.7846i −0.548294 0.949673i −0.998392 0.0566937i \(-0.981944\pi\)
0.450098 0.892979i \(-0.351389\pi\)
\(480\) 1.50000 0.866025i 0.0684653 0.0395285i
\(481\) 6.00000 10.3923i 0.273576 0.473848i
\(482\) −5.00000 8.66025i −0.227744 0.394464i
\(483\) 0 0
\(484\) 3.50000 6.06218i 0.159091 0.275554i
\(485\) 1.00000 + 1.73205i 0.0454077 + 0.0786484i
\(486\) 13.5000 7.79423i 0.612372 0.353553i
\(487\) −12.5000 + 21.6506i −0.566429 + 0.981084i 0.430486 + 0.902597i \(0.358342\pi\)
−0.996915 + 0.0784867i \(0.974991\pi\)
\(488\) 13.0000 0.588482
\(489\) 10.3923i 0.469956i
\(490\) 0 0
\(491\) −3.00000 5.19615i −0.135388 0.234499i 0.790358 0.612646i \(-0.209895\pi\)
−0.925746 + 0.378147i \(0.876561\pi\)
\(492\) 20.7846i 0.937043i
\(493\) 0 0
\(494\) 7.00000 12.1244i 0.314945 0.545501i
\(495\) −3.00000 5.19615i −0.134840 0.233550i
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) 18.0000 10.3923i 0.806599 0.465690i
\(499\) −12.0000 + 20.7846i −0.537194 + 0.930447i 0.461860 + 0.886953i \(0.347182\pi\)
−0.999054 + 0.0434940i \(0.986151\pi\)
\(500\) −9.00000 −0.402492
\(501\) 3.46410i 0.154765i
\(502\) 7.00000 0.312425
\(503\) 14.0000 0.624229 0.312115 0.950044i \(-0.398963\pi\)
0.312115 + 0.950044i \(0.398963\pi\)
\(504\) 0 0
\(505\) −11.0000 −0.489494
\(506\) −6.00000 −0.266733
\(507\) −13.5000 + 7.79423i −0.599556 + 0.346154i
\(508\) −19.0000 −0.842989
\(509\) 17.0000 29.4449i 0.753512 1.30512i −0.192599 0.981278i \(-0.561692\pi\)
0.946111 0.323843i \(-0.104975\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 31.5000 18.1865i 1.39076 0.802955i
\(514\) −4.00000 + 6.92820i −0.176432 + 0.305590i
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) −12.0000 + 6.92820i −0.528271 + 0.304997i
\(517\) −8.00000 13.8564i −0.351840 0.609404i
\(518\) 0 0
\(519\) 33.0000 + 19.0526i 1.44854 + 0.836315i
\(520\) 2.00000 0.0877058
\(521\) −7.00000 + 12.1244i −0.306676 + 0.531178i −0.977633 0.210318i \(-0.932550\pi\)
0.670957 + 0.741496i \(0.265883\pi\)
\(522\) 24.0000 1.05045
\(523\) −17.5000 30.3109i −0.765222 1.32540i −0.940129 0.340818i \(-0.889296\pi\)
0.174908 0.984585i \(-0.444037\pi\)
\(524\) −7.50000 + 12.9904i −0.327639 + 0.567487i
\(525\) 0 0
\(526\) −9.50000 16.4545i −0.414220 0.717450i
\(527\) 0 0
\(528\) 3.46410i 0.150756i
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) −2.00000 3.46410i −0.0868744 0.150471i
\(531\) 6.00000 + 10.3923i 0.260378 + 0.450988i
\(532\) 0 0
\(533\) 12.0000 20.7846i 0.519778 0.900281i
\(534\) 24.2487i 1.04934i
\(535\) 8.00000 0.345870
\(536\) −2.00000 −0.0863868
\(537\) −36.0000 + 20.7846i −1.55351 + 0.896922i
\(538\) −3.50000 + 6.06218i −0.150896 + 0.261359i
\(539\) 0 0
\(540\) 4.50000 + 2.59808i 0.193649 + 0.111803i
\(541\) 10.0000 + 17.3205i 0.429934 + 0.744667i 0.996867 0.0790969i \(-0.0252036\pi\)
−0.566933 + 0.823764i \(0.691870\pi\)
\(542\) −7.00000 12.1244i −0.300676 0.520786i
\(543\) −10.5000 6.06218i −0.450598 0.260153i
\(544\) 0 0
\(545\) −2.00000 3.46410i −0.0856706 0.148386i
\(546\) 0 0
\(547\) 4.00000 6.92820i 0.171028 0.296229i −0.767752 0.640747i \(-0.778625\pi\)
0.938779 + 0.344519i \(0.111958\pi\)
\(548\) 1.00000 + 1.73205i 0.0427179 + 0.0739895i
\(549\) 19.5000 + 33.7750i 0.832240 + 1.44148i
\(550\) −4.00000 + 6.92820i −0.170561 + 0.295420i
\(551\) 56.0000 2.38568
\(552\) 4.50000 2.59808i 0.191533 0.110581i
\(553\) 0 0
\(554\) 1.00000 + 1.73205i 0.0424859 + 0.0735878i
\(555\) 9.00000 + 5.19615i 0.382029 + 0.220564i
\(556\) −4.50000 7.79423i −0.190843 0.330549i
\(557\) −9.00000 + 15.5885i −0.381342 + 0.660504i −0.991254 0.131965i \(-0.957871\pi\)
0.609912 + 0.792469i \(0.291205\pi\)
\(558\) 6.00000 + 10.3923i 0.254000 + 0.439941i
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 7.50000 12.9904i 0.316368 0.547966i
\(563\) 11.0000 0.463595 0.231797 0.972764i \(-0.425539\pi\)
0.231797 + 0.972764i \(0.425539\pi\)
\(564\) 12.0000 + 6.92820i 0.505291 + 0.291730i
\(565\) −1.00000 −0.0420703
\(566\) 25.0000 1.05083
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 10.5000 + 6.06218i 0.439797 + 0.253917i
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 2.00000 3.46410i 0.0836242 0.144841i
\(573\) −4.50000 2.59808i −0.187990 0.108536i
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) −14.0000 + 24.2487i −0.582828 + 1.00949i 0.412315 + 0.911041i \(0.364720\pi\)
−0.995142 + 0.0984456i \(0.968613\pi\)
\(578\) 8.50000 + 14.7224i 0.353553 + 0.612372i
\(579\) −7.50000 4.33013i −0.311689 0.179954i
\(580\) 4.00000 + 6.92820i 0.166091 + 0.287678i
\(581\) 0 0
\(582\) −3.00000 + 1.73205i −0.124354 + 0.0717958i
\(583\) −8.00000 −0.331326
\(584\) 7.00000 12.1244i 0.289662 0.501709i
\(585\) 3.00000 + 5.19615i 0.124035 + 0.214834i
\(586\) −4.50000 7.79423i −0.185893 0.321977i
\(587\) 11.5000 19.9186i 0.474656 0.822128i −0.524923 0.851150i \(-0.675906\pi\)
0.999579 + 0.0290218i \(0.00923921\pi\)
\(588\) 0 0
\(589\) 14.0000 + 24.2487i 0.576860 + 0.999151i
\(590\) −2.00000 + 3.46410i −0.0823387 + 0.142615i
\(591\) 18.0000 + 10.3923i 0.740421 + 0.427482i
\(592\) 3.00000 + 5.19615i 0.123299 + 0.213561i
\(593\) −21.0000 36.3731i −0.862367 1.49366i −0.869638 0.493689i \(-0.835648\pi\)
0.00727173 0.999974i \(-0.497685\pi\)
\(594\) 9.00000 5.19615i 0.369274 0.213201i
\(595\) 0 0
\(596\) −5.00000 + 8.66025i −0.204808 + 0.354738i
\(597\) −21.0000 + 12.1244i −0.859473 + 0.496217i
\(598\) 6.00000 0.245358
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 6.92820i 0.282843i
\(601\) −13.0000 + 22.5167i −0.530281 + 0.918474i 0.469095 + 0.883148i \(0.344580\pi\)
−0.999376 + 0.0353259i \(0.988753\pi\)
\(602\) 0 0
\(603\) −3.00000 5.19615i −0.122169 0.211604i
\(604\) −9.50000 16.4545i −0.386550 0.669523i
\(605\) 3.50000 + 6.06218i 0.142295 + 0.246463i
\(606\) 19.0526i 0.773957i
\(607\) 3.00000 5.19615i 0.121766 0.210905i −0.798698 0.601732i \(-0.794478\pi\)
0.920464 + 0.390827i \(0.127811\pi\)
\(608\) 3.50000 + 6.06218i 0.141944 + 0.245854i
\(609\) 0 0
\(610\) −6.50000 + 11.2583i −0.263177 + 0.455836i
\(611\) 8.00000 + 13.8564i 0.323645 + 0.560570i
\(612\) 0 0
\(613\) 5.00000 8.66025i 0.201948 0.349784i −0.747208 0.664590i \(-0.768606\pi\)
0.949156 + 0.314806i \(0.101939\pi\)
\(614\) 7.00000 0.282497
\(615\) 18.0000 + 10.3923i 0.725830 + 0.419058i
\(616\) 0 0
\(617\) 11.0000 + 19.0526i 0.442843 + 0.767027i 0.997899 0.0647859i \(-0.0206365\pi\)
−0.555056 + 0.831813i \(0.687303\pi\)
\(618\) 12.0000 6.92820i 0.482711 0.278693i
\(619\) 5.50000 + 9.52628i 0.221064 + 0.382893i 0.955131 0.296183i \(-0.0957138\pi\)
−0.734068 + 0.679076i \(0.762380\pi\)
\(620\) −2.00000 + 3.46410i −0.0803219 + 0.139122i
\(621\) 13.5000 + 7.79423i 0.541736 + 0.312772i
\(622\) −10.0000 −0.400963
\(623\) 0 0
\(624\) 3.46410i 0.138675i
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 6.00000 0.239808
\(627\) 21.0000 12.1244i 0.838659 0.484200i
\(628\) 11.0000 0.438948
\(629\) 0 0
\(630\) 0 0
\(631\) 9.00000 0.358284 0.179142 0.983823i \(-0.442668\pi\)
0.179142 + 0.983823i \(0.442668\pi\)
\(632\) −11.0000 −0.437557
\(633\) 38.1051i 1.51454i
\(634\) 24.0000 0.953162
\(635\) 9.50000 16.4545i 0.376996 0.652976i
\(636\) 6.00000 3.46410i 0.237915 0.137361i
\(637\) 0 0
\(638\) 16.0000 0.633446
\(639\) −7.50000 12.9904i −0.296695 0.513892i
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) −23.5000 40.7032i −0.928194 1.60768i −0.786342 0.617792i \(-0.788027\pi\)
−0.141852 0.989888i \(-0.545306\pi\)
\(642\) 13.8564i 0.546869i
\(643\) 6.00000 + 10.3923i 0.236617 + 0.409832i 0.959741 0.280885i \(-0.0906280\pi\)
−0.723124 + 0.690718i \(0.757295\pi\)
\(644\) 0 0
\(645\) 13.8564i 0.545595i
\(646\) 0 0
\(647\) 21.0000 36.3731i 0.825595 1.42997i −0.0758684 0.997118i \(-0.524173\pi\)
0.901464 0.432855i \(-0.142494\pi\)
\(648\) −4.50000 + 7.79423i −0.176777 + 0.306186i
\(649\) 4.00000 + 6.92820i 0.157014 + 0.271956i
\(650\) 4.00000 6.92820i 0.156893 0.271746i
\(651\) 0 0
\(652\) 3.00000 + 5.19615i 0.117489 + 0.203497i
\(653\) 16.0000 27.7128i 0.626128 1.08449i −0.362193 0.932103i \(-0.617972\pi\)
0.988322 0.152383i \(-0.0486948\pi\)
\(654\) 6.00000 3.46410i 0.234619 0.135457i
\(655\) −7.50000 12.9904i −0.293049 0.507576i
\(656\) 6.00000 + 10.3923i 0.234261 + 0.405751i
\(657\) 42.0000 1.63858
\(658\) 0 0
\(659\) −10.0000 + 17.3205i −0.389545 + 0.674711i −0.992388 0.123148i \(-0.960701\pi\)
0.602844 + 0.797859i \(0.294034\pi\)
\(660\) 3.00000 + 1.73205i 0.116775 + 0.0674200i
\(661\) −31.0000 −1.20576 −0.602880 0.797832i \(-0.705980\pi\)
−0.602880 + 0.797832i \(0.705980\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) −6.00000 + 10.3923i −0.232845 + 0.403300i
\(665\) 0 0
\(666\) −9.00000 + 15.5885i −0.348743 + 0.604040i
\(667\) 12.0000 + 20.7846i 0.464642 + 0.804783i
\(668\) −1.00000 1.73205i −0.0386912 0.0670151i
\(669\) −3.00000 + 1.73205i −0.115987 + 0.0669650i
\(670\) 1.00000 1.73205i 0.0386334 0.0669150i
\(671\) 13.0000 + 22.5167i 0.501859 + 0.869246i
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.0192736 0.0333828i −0.856228 0.516599i \(-0.827198\pi\)
0.875501 + 0.483216i \(0.160531\pi\)
\(674\) 11.0000 + 19.0526i 0.423704 + 0.733877i
\(675\) 18.0000 10.3923i 0.692820 0.400000i
\(676\) 4.50000 7.79423i 0.173077 0.299778i
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 1.73205i 0.0665190i
\(679\) 0 0
\(680\) 0 0
\(681\) 29.4449i 1.12833i
\(682\) 4.00000 + 6.92820i 0.153168 + 0.265295i
\(683\) 5.00000 8.66025i 0.191320 0.331375i −0.754368 0.656452i \(-0.772057\pi\)
0.945688 + 0.325076i \(0.105390\pi\)
\(684\) −10.5000 + 18.1865i −0.401478 + 0.695379i
\(685\) −2.00000 −0.0764161
\(686\) 0 0
\(687\) −19.5000 + 11.2583i −0.743971 + 0.429532i
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) 8.00000 0.304776
\(690\) 5.19615i 0.197814i
\(691\) −29.0000 −1.10321 −0.551606 0.834105i \(-0.685985\pi\)
−0.551606 + 0.834105i \(0.685985\pi\)
\(692\) −22.0000 −0.836315
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 9.00000 0.341389
\(696\) −12.0000 + 6.92820i −0.454859 + 0.262613i
\(697\) 0 0
\(698\) 15.0000 25.9808i 0.567758 0.983386i
\(699\) 1.73205i 0.0655122i
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) −9.00000 + 5.19615i −0.339683 + 0.196116i
\(703\) −21.0000 + 36.3731i −0.792030 + 1.37184i
\(704\) 1.00000 + 1.73205i 0.0376889 + 0.0652791i
\(705\) −12.0000 + 6.92820i −0.451946 + 0.260931i
\(706\) −12.0000 20.7846i −0.451626 0.782239i
\(707\) 0 0
\(708\) −6.00000 3.46410i −0.225494 0.130189i
\(709\) −32.0000 −1.20179 −0.600893 0.799330i \(-0.705188\pi\)
−0.600893 + 0.799330i \(0.705188\pi\)
\(710\) 2.50000 4.33013i 0.0938233 0.162507i
\(711\) −16.5000 28.5788i −0.618798 1.07179i
\(712\) −7.00000 12.1244i −0.262336 0.454379i
\(713\) −6.00000 + 10.3923i −0.224702 + 0.389195i
\(714\) 0 0
\(715\) 2.00000 + 3.46410i 0.0747958 + 0.129550i
\(716\) 12.0000 20.7846i 0.448461 0.776757i
\(717\) 25.9808i 0.970269i
\(718\) −14.5000 25.1147i −0.541135 0.937274i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) −3.00000 −0.111803
\(721\) 0 0
\(722\) −15.0000 + 25.9808i −0.558242 + 0.966904i
\(723\) 17.3205i 0.644157i
\(724\) 7.00000 0.260153
\(725\) 32.0000 1.18845
\(726\) −10.5000 + 6.06218i −0.389692 + 0.224989i
\(727\) −13.0000 + 22.5167i −0.482143 + 0.835097i −0.999790 0.0204978i \(-0.993475\pi\)
0.517647 + 0.855595i \(0.326808\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 7.00000 + 12.1244i 0.259082 + 0.448743i
\(731\) 0 0
\(732\) −19.5000 11.2583i −0.720741 0.416120i
\(733\) −0.500000 + 0.866025i −0.0184679 + 0.0319874i −0.875112 0.483921i \(-0.839212\pi\)
0.856644 + 0.515908i \(0.172546\pi\)
\(734\) 16.0000 + 27.7128i 0.590571 + 1.02290i
\(735\) 0 0
\(736\) −1.50000 + 2.59808i −0.0552907 + 0.0957664i
\(737\) −2.00000 3.46410i −0.0736709 0.127602i
\(738\) −18.0000 + 31.1769i −0.662589 + 1.14764i
\(739\) 19.0000 32.9090i 0.698926 1.21058i −0.269913 0.962885i \(-0.586995\pi\)
0.968839 0.247691i \(-0.0796718\pi\)
\(740\) −6.00000 −0.220564
\(741\) −21.0000 + 12.1244i −0.771454 + 0.445399i
\(742\) 0 0
\(743\) −24.0000 41.5692i −0.880475 1.52503i −0.850814 0.525467i \(-0.823891\pi\)
−0.0296605 0.999560i \(-0.509443\pi\)
\(744\) −6.00000 3.46410i −0.219971 0.127000i
\(745\) −5.00000 8.66025i −0.183186 0.317287i
\(746\) 16.0000 27.7128i 0.585802 1.01464i
\(747\) −36.0000 −1.31717
\(748\) 0 0
\(749\) 0 0
\(750\) 13.5000 + 7.79423i 0.492950 + 0.284605i
\(751\) 19.5000 33.7750i 0.711565 1.23247i −0.252704 0.967544i \(-0.581320\pi\)
0.964269 0.264923i \(-0.0853467\pi\)
\(752\) −8.00000 −0.291730
\(753\) −10.5000 6.06218i −0.382641 0.220918i
\(754\) −16.0000 −0.582686
\(755\) 19.0000 0.691481
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) −12.0000 −0.435860
\(759\) 9.00000 + 5.19615i 0.326679 + 0.188608i
\(760\) −7.00000 −0.253917
\(761\) 10.0000 17.3205i 0.362500 0.627868i −0.625872 0.779926i \(-0.715257\pi\)
0.988372 + 0.152058i \(0.0485900\pi\)
\(762\) 28.5000 + 16.4545i 1.03245 + 0.596083i
\(763\) 0 0
\(764\) 3.00000 0.108536
\(765\) 0 0
\(766\) 3.00000 5.19615i 0.108394 0.187745i
\(767\) −4.00000 6.92820i −0.144432 0.250163i
\(768\) −1.50000 0.866025i −0.0541266 0.0312500i
\(769\) −1.00000 1.73205i −0.0360609 0.0624593i 0.847432 0.530904i \(-0.178148\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 12.0000 6.92820i 0.432169 0.249513i
\(772\) 5.00000 0.179954
\(773\) −10.5000 + 18.1865i −0.377659 + 0.654124i −0.990721 0.135910i \(-0.956604\pi\)
0.613062 + 0.790034i \(0.289937\pi\)
\(774\) 24.0000 0.862662
\(775\) 8.00000 + 13.8564i 0.287368 + 0.497737i
\(776\) 1.00000 1.73205i 0.0358979 0.0621770i
\(777\) 0 0
\(778\) 15.0000 + 25.9808i 0.537776 + 0.931455i
\(779\) −42.0000 + 72.7461i −1.50481 + 2.60640i
\(780\) −3.00000 1.73205i −0.107417 0.0620174i
\(781\) −5.00000 8.66025i −0.178914 0.309888i
\(782\) 0 0
\(783\) −36.0000 20.7846i −1.28654 0.742781i
\(784\) 0 0
\(785\) −5.50000 + 9.52628i −0.196303 + 0.340007i
\(786\) 22.5000 12.9904i 0.802548 0.463352i
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) −12.0000 −0.427482
\(789\) 32.9090i 1.17159i
\(790\) 5.50000 9.52628i 0.195681 0.338930i
\(791\) 0 0
\(792\) −3.00000 + 5.19615i −0.106600 + 0.184637i
\(793\) −13.0000 22.5167i −0.461644 0.799590i
\(794\) −7.00000 12.1244i −0.248421 0.430277i
\(795\) 6.92820i 0.245718i
\(796\) 7.00000 12.1244i 0.248108 0.429736i
\(797\) −25.5000 44.1673i −0.903256 1.56449i −0.823241 0.567692i \(-0.807836\pi\)
−0.0800155 0.996794i \(-0.525497\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.00000 + 3.46410i 0.0707107 + 0.122474i
\(801\) 21.0000 36.3731i 0.741999 1.28518i
\(802\) −1.50000 + 2.59808i −0.0529668 + 0.0917413i
\(803\) 28.0000 0.988099
\(804\) 3.00000 + 1.73205i 0.105802 + 0.0610847i
\(805\) 0 0
\(806\) −4.00000 6.92820i −0.140894 0.244036i
\(807\) 10.5000 6.06218i 0.369618 0.213399i
\(808\) 5.50000 + 9.52628i 0.193489 + 0.335133i
\(809\) −9.00000 + 15.5885i −0.316423 + 0.548061i −0.979739 0.200279i \(-0.935815\pi\)
0.663316 + 0.748340i \(0.269149\pi\)
\(810\) −4.50000 7.79423i −0.158114 0.273861i
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 24.2487i 0.850439i
\(814\) −6.00000 + 10.3923i −0.210300 + 0.364250i
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) 56.0000 1.95919
\(818\) −24.0000 −0.839140
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) −32.0000 −1.11681 −0.558404 0.829569i \(-0.688586\pi\)
−0.558404 + 0.829569i \(0.688586\pi\)
\(822\) 3.46410i 0.120824i
\(823\) −44.0000 −1.53374 −0.766872 0.641800i \(-0.778188\pi\)
−0.766872 + 0.641800i \(0.778188\pi\)
\(824\) −4.00000 + 6.92820i −0.139347 + 0.241355i
\(825\) 12.0000 6.92820i 0.417786 0.241209i
\(826\) 0 0
\(827\) 30.0000 1.04320 0.521601 0.853189i \(-0.325335\pi\)
0.521601 + 0.853189i \(0.325335\pi\)
\(828\) −9.00000 −0.312772
\(829\) 7.00000 12.1244i 0.243120 0.421096i −0.718481 0.695546i \(-0.755162\pi\)
0.961601 + 0.274450i \(0.0884958\pi\)
\(830\) −6.00000 10.3923i −0.208263 0.360722i
\(831\) 3.46410i 0.120168i
\(832\) −1.00000 1.73205i −0.0346688 0.0600481i
\(833\) 0 0
\(834\) 15.5885i 0.539784i
\(835\) 2.00000 0.0692129
\(836\) −7.00000 + 12.1244i −0.242100 + 0.419330i
\(837\) 20.7846i 0.718421i
\(838\) 2.50000 + 4.33013i 0.0863611 + 0.149582i
\(839\) 15.0000 25.9808i 0.517858 0.896956i −0.481927 0.876211i \(-0.660063\pi\)
0.999785 0.0207443i \(-0.00660359\pi\)
\(840\) 0 0
\(841\) −17.5000 30.3109i −0.603448 1.04520i
\(842\) 18.0000 31.1769i 0.620321 1.07443i
\(843\) −22.5000 + 12.9904i −0.774941 + 0.447412i
\(844\) 11.0000 + 19.0526i 0.378636 + 0.655816i
\(845\) 4.50000 + 7.79423i 0.154805 + 0.268130i
\(846\) −12.0000 20.7846i −0.412568 0.714590i
\(847\) 0 0
\(848\) −2.00000 + 3.46410i −0.0686803 + 0.118958i
\(849\) −37.5000 21.6506i −1.28700 0.743048i
\(850\) 0 0
\(851\) −18.0000 −0.617032
\(852\) 7.50000 + 4.33013i 0.256946 + 0.148348i
\(853\) 18.5000 32.0429i 0.633428 1.09713i −0.353418 0.935466i \(-0.614981\pi\)
0.986846 0.161664i \(-0.0516860\pi\)
\(854\) 0 0
\(855\) −10.5000 18.1865i −0.359092 0.621966i
\(856\) −4.00000 6.92820i −0.136717 0.236801i
\(857\) 9.00000 + 15.5885i 0.307434 + 0.532492i 0.977800 0.209539i \(-0.0671963\pi\)
−0.670366 + 0.742030i \(0.733863\pi\)
\(858\) −6.00000 + 3.46410i −0.204837 + 0.118262i
\(859\) −18.0000 + 31.1769i −0.614152 + 1.06374i 0.376381 + 0.926465i \(0.377169\pi\)
−0.990533 + 0.137277i \(0.956165\pi\)
\(860\) 4.00000 + 6.92820i 0.136399 + 0.236250i
\(861\) 0 0
\(862\) −16.0000 + 27.7128i −0.544962 + 0.943902i
\(863\) −28.5000 49.3634i −0.970151 1.68035i −0.695087 0.718925i \(-0.744634\pi\)
−0.275064 0.961426i \(-0.588699\pi\)
\(864\) 5.19615i 0.176777i
\(865\) 11.0000 19.0526i 0.374011 0.647806i
\(866\) −28.0000 −0.951479
\(867\) 29.4449i 1.00000i
\(868\) 0 0
\(869\) −11.0000 19.0526i −0.373149 0.646314i
\(870\) 13.8564i 0.469776i
\(871\) 2.00000 + 3.46410i 0.0677674 + 0.117377i
\(872\) −2.00000 + 3.46410i −0.0677285 + 0.117309i
\(873\) 6.00000 0.203069
\(874\) −21.0000 −0.710336
\(875\) 0 0
\(876\) −21.0000 + 12.1244i −0.709524 + 0.409644i
\(877\) −12.0000 + 20.7846i −0.405211 + 0.701846i −0.994346 0.106188i \(-0.966135\pi\)
0.589135 + 0.808035i \(0.299469\pi\)
\(878\) −36.0000 −1.21494
\(879\) 15.5885i 0.525786i
\(880\) −2.00000 −0.0674200
\(881\) 28.0000 0.943344 0.471672 0.881774i \(-0.343651\pi\)
0.471672 + 0.881774i \(0.343651\pi\)
\(882\) 0 0
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) 0 0
\(885\) 6.00000 3.46410i 0.201688 0.116445i
\(886\) 24.0000 0.806296
\(887\) −18.0000 + 31.1769i −0.604381 + 1.04682i 0.387768 + 0.921757i \(0.373246\pi\)
−0.992149 + 0.125061i \(0.960087\pi\)
\(888\) 10.3923i 0.348743i
\(889\) 0 0
\(890\) 14.0000 0.469281
\(891\) −18.0000 −0.603023
\(892\) 1.00000 1.73205i 0.0334825 0.0579934i
\(893\) −28.0000 48.4974i −0.936984 1.62290i
\(894\) 15.0000 8.66025i 0.501675 0.289642i
\(895\) 12.0000 + 20.7846i 0.401116 + 0.694753i
\(896\) 0 0
\(897\) −9.00000 5.19615i −0.300501 0.173494i
\(898\) 9.00000 0.300334
\(899\) 16.0000 27.7128i 0.533630 0.924274i
\(900\) −6.00000 + 10.3923i −0.200000 + 0.346410i
\(901\) 0 0
\(902\) −12.0000 + 20.7846i −0.399556 + 0.692052i
\(903\) 0 0
\(904\) 0.500000 + 0.866025i 0.0166298 + 0.0288036i
\(905\) −3.50000 + 6.06218i −0.116344 + 0.201514i
\(906\) 32.9090i 1.09333i
\(907\) 1.00000 + 1.73205i 0.0332045 + 0.0575118i 0.882150 0.470968i \(-0.156095\pi\)
−0.848946 + 0.528480i \(0.822762\pi\)
\(908\) −8.50000 14.7224i −0.282082 0.488581i
\(909\) −16.5000 + 28.5788i −0.547270 + 0.947900i
\(910\) 0 0
\(911\) 0.500000 0.866025i 0.0165657 0.0286927i −0.857624 0.514278i \(-0.828060\pi\)
0.874189 + 0.485585i \(0.161393\pi\)
\(912\) 12.1244i 0.401478i
\(913\) −24.0000 −0.794284
\(914\) 17.0000 0.562310
\(915\) 19.5000 11.2583i 0.644650 0.372189i
\(916\) 6.50000 11.2583i 0.214766 0.371986i
\(917\) 0 0
\(918\) 0 0
\(919\) −7.50000 12.9904i −0.247402 0.428513i 0.715402 0.698713i \(-0.246244\pi\)
−0.962804 + 0.270200i \(0.912910\pi\)
\(920\) −1.50000 2.59808i −0.0494535 0.0856560i
\(921\) −10.5000 6.06218i −0.345987 0.199756i
\(922\) 4.50000 7.79423i 0.148200 0.256689i
\(923\) 5.00000 + 8.66025i 0.164577 + 0.285056i
\(924\) 0 0
\(925\) −12.0000 + 20.7846i −0.394558 + 0.683394i
\(926\) 0.500000 + 0.866025i 0.0164310 + 0.0284594i
\(927\) −24.0000 −0.788263
\(928\) 4.00000 6.92820i 0.131306 0.227429i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 6.00000 3.46410i 0.196748 0.113592i
\(931\) 0 0
\(932\) −0.500000 0.866025i −0.0163780 0.0283676i
\(933\) 15.0000 + 8.66025i 0.491078 + 0.283524i
\(934\) 14.0000 + 24.2487i 0.458094 + 0.793442i
\(935\) 0 0
\(936\) 3.00000 5.19615i 0.0980581 0.169842i
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) −9.00000 5.19615i −0.293704 0.169570i
\(940\) 4.00000 6.92820i 0.130466 0.225973i
\(941\) −3.00000 −0.0977972 −0.0488986 0.998804i \(-0.515571\pi\)
−0.0488986 + 0.998804i \(0.515571\pi\)
\(942\) −16.5000 9.52628i −0.537599 0.310383i
\(943\) −36.0000 −1.17232
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) 10.0000 0.324956 0.162478 0.986712i \(-0.448051\pi\)
0.162478 + 0.986712i \(0.448051\pi\)
\(948\) 16.5000 + 9.52628i 0.535895 + 0.309399i
\(949\) −28.0000 −0.908918
\(950\) −14.0000 + 24.2487i −0.454220 + 0.786732i
\(951\) −36.0000 20.7846i −1.16738 0.673987i
\(952\) 0 0
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) −12.0000 −0.388514
\(955\) −1.50000 + 2.59808i −0.0485389 + 0.0840718i
\(956\) 7.50000 + 12.9904i 0.242567 + 0.420139i
\(957\) −24.0000 13.8564i −0.775810 0.447914i
\(958\) −12.0000 20.7846i −0.387702 0.671520i
\(959\) 0 0
\(960\) 1.50000 0.866025i 0.0484123 0.0279508i
\(961\) −15.0000 −0.483871
\(962\) 6.00000 10.3923i 0.193448 0.335061i
\(963\) 12.0000 20.7846i 0.386695 0.669775i
\(964\) −5.00000 8.66025i −0.161039 0.278928i
\(965\) −2.50000 + 4.33013i −0.0804778 + 0.139392i
\(966\) 0 0
\(967\) −6.50000 11.2583i −0.209026 0.362043i 0.742382 0.669977i \(-0.233696\pi\)
−0.951408 + 0.307933i \(0.900363\pi\)
\(968\) 3.50000 6.06218i 0.112494 0.194846i
\(969\) 0 0
\(970\) 1.00000 + 1.73205i 0.0321081 + 0.0556128i
\(971\) 17.5000 + 30.3109i 0.561602 + 0.972723i 0.997357 + 0.0726575i \(0.0231480\pi\)
−0.435755 + 0.900065i \(0.643519\pi\)
\(972\) 13.5000 7.79423i 0.433013 0.250000i
\(973\) 0 0
\(974\) −12.5000 + 21.6506i −0.400526 + 0.693731i
\(975\) −12.0000 + 6.92820i −0.384308 + 0.221880i
\(976\) 13.0000 0.416120
\(977\) −2.00000 −0.0639857 −0.0319928 0.999488i \(-0.510185\pi\)
−0.0319928 + 0.999488i \(0.510185\pi\)
\(978\) 10.3923i 0.332309i
\(979\) 14.0000 24.2487i 0.447442 0.774992i
\(980\) 0 0
\(981\) −12.0000 −0.383131
\(982\) −3.00000 5.19615i −0.0957338 0.165816i
\(983\) 16.0000 + 27.7128i 0.510321 + 0.883901i 0.999928 + 0.0119587i \(0.00380665\pi\)
−0.489608 + 0.871943i \(0.662860\pi\)
\(984\) 20.7846i 0.662589i
\(985\) 6.00000 10.3923i 0.191176 0.331126i
\(986\) 0 0
\(987\) 0 0
\(988\) 7.00000 12.1244i 0.222700 0.385727i
\(989\) 12.0000 + 20.7846i 0.381578 + 0.660912i
\(990\) −3.00000 5.19615i −0.0953463 0.165145i
\(991\) −16.0000 + 27.7128i −0.508257 + 0.880327i 0.491698 + 0.870766i \(0.336377\pi\)
−0.999954 + 0.00956046i \(0.996957\pi\)
\(992\) 4.00000 0.127000
\(993\) 6.00000 + 3.46410i 0.190404 + 0.109930i
\(994\) 0 0
\(995\) 7.00000 + 12.1244i 0.221915 + 0.384368i
\(996\) 18.0000 10.3923i 0.570352 0.329293i
\(997\) −8.50000 14.7224i −0.269198 0.466264i 0.699457 0.714675i \(-0.253425\pi\)
−0.968655 + 0.248410i \(0.920092\pi\)
\(998\) −12.0000 + 20.7846i −0.379853 + 0.657925i
\(999\) 27.0000 15.5885i 0.854242 0.493197i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.e.f.655.1 2
3.2 odd 2 2646.2.e.d.2125.1 2
7.2 even 3 882.2.h.d.79.1 2
7.3 odd 6 882.2.f.c.295.1 yes 2
7.4 even 3 882.2.f.b.295.1 2
7.5 odd 6 882.2.h.a.79.1 2
7.6 odd 2 882.2.e.j.655.1 2
9.4 even 3 882.2.h.d.67.1 2
9.5 odd 6 2646.2.h.g.361.1 2
21.2 odd 6 2646.2.h.g.667.1 2
21.5 even 6 2646.2.h.j.667.1 2
21.11 odd 6 2646.2.f.h.883.1 2
21.17 even 6 2646.2.f.f.883.1 2
21.20 even 2 2646.2.e.a.2125.1 2
63.4 even 3 882.2.f.b.589.1 yes 2
63.5 even 6 2646.2.e.a.1549.1 2
63.11 odd 6 7938.2.a.f.1.1 1
63.13 odd 6 882.2.h.a.67.1 2
63.23 odd 6 2646.2.e.d.1549.1 2
63.25 even 3 7938.2.a.ba.1.1 1
63.31 odd 6 882.2.f.c.589.1 yes 2
63.32 odd 6 2646.2.f.h.1765.1 2
63.38 even 6 7938.2.a.k.1.1 1
63.40 odd 6 882.2.e.j.373.1 2
63.41 even 6 2646.2.h.j.361.1 2
63.52 odd 6 7938.2.a.v.1.1 1
63.58 even 3 inner 882.2.e.f.373.1 2
63.59 even 6 2646.2.f.f.1765.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.f.373.1 2 63.58 even 3 inner
882.2.e.f.655.1 2 1.1 even 1 trivial
882.2.e.j.373.1 2 63.40 odd 6
882.2.e.j.655.1 2 7.6 odd 2
882.2.f.b.295.1 2 7.4 even 3
882.2.f.b.589.1 yes 2 63.4 even 3
882.2.f.c.295.1 yes 2 7.3 odd 6
882.2.f.c.589.1 yes 2 63.31 odd 6
882.2.h.a.67.1 2 63.13 odd 6
882.2.h.a.79.1 2 7.5 odd 6
882.2.h.d.67.1 2 9.4 even 3
882.2.h.d.79.1 2 7.2 even 3
2646.2.e.a.1549.1 2 63.5 even 6
2646.2.e.a.2125.1 2 21.20 even 2
2646.2.e.d.1549.1 2 63.23 odd 6
2646.2.e.d.2125.1 2 3.2 odd 2
2646.2.f.f.883.1 2 21.17 even 6
2646.2.f.f.1765.1 2 63.59 even 6
2646.2.f.h.883.1 2 21.11 odd 6
2646.2.f.h.1765.1 2 63.32 odd 6
2646.2.h.g.361.1 2 9.5 odd 6
2646.2.h.g.667.1 2 21.2 odd 6
2646.2.h.j.361.1 2 63.41 even 6
2646.2.h.j.667.1 2 21.5 even 6
7938.2.a.f.1.1 1 63.11 odd 6
7938.2.a.k.1.1 1 63.38 even 6
7938.2.a.v.1.1 1 63.52 odd 6
7938.2.a.ba.1.1 1 63.25 even 3