Properties

Label 2646.2.e.a.1549.1
Level $2646$
Weight $2$
Character 2646.1549
Analytic conductor $21.128$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(1549,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,-1,0,0,-2,0,1,-2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1549
Dual form 2646.2.e.a.2125.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(-0.500000 - 0.866025i) q^{5} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{10} +(-1.00000 + 1.73205i) q^{11} +(1.00000 - 1.73205i) q^{13} +1.00000 q^{16} +(-3.50000 + 6.06218i) q^{19} +(-0.500000 - 0.866025i) q^{20} +(1.00000 - 1.73205i) q^{22} +(1.50000 + 2.59808i) q^{23} +(2.00000 - 3.46410i) q^{25} +(-1.00000 + 1.73205i) q^{26} +(-4.00000 - 6.92820i) q^{29} -4.00000 q^{31} -1.00000 q^{32} +(3.00000 - 5.19615i) q^{37} +(3.50000 - 6.06218i) q^{38} +(0.500000 + 0.866025i) q^{40} +(6.00000 - 10.3923i) q^{41} +(4.00000 + 6.92820i) q^{43} +(-1.00000 + 1.73205i) q^{44} +(-1.50000 - 2.59808i) q^{46} -8.00000 q^{47} +(-2.00000 + 3.46410i) q^{50} +(1.00000 - 1.73205i) q^{52} +(2.00000 + 3.46410i) q^{53} +2.00000 q^{55} +(4.00000 + 6.92820i) q^{58} +4.00000 q^{59} -13.0000 q^{61} +4.00000 q^{62} +1.00000 q^{64} -2.00000 q^{65} -2.00000 q^{67} +5.00000 q^{71} +(-7.00000 - 12.1244i) q^{73} +(-3.00000 + 5.19615i) q^{74} +(-3.50000 + 6.06218i) q^{76} -11.0000 q^{79} +(-0.500000 - 0.866025i) q^{80} +(-6.00000 + 10.3923i) q^{82} +(-6.00000 - 10.3923i) q^{83} +(-4.00000 - 6.92820i) q^{86} +(1.00000 - 1.73205i) q^{88} +(-7.00000 + 12.1244i) q^{89} +(1.50000 + 2.59808i) q^{92} +8.00000 q^{94} +7.00000 q^{95} +(-1.00000 - 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - q^{5} - 2 q^{8} + q^{10} - 2 q^{11} + 2 q^{13} + 2 q^{16} - 7 q^{19} - q^{20} + 2 q^{22} + 3 q^{23} + 4 q^{25} - 2 q^{26} - 8 q^{29} - 8 q^{31} - 2 q^{32} + 6 q^{37} + 7 q^{38}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0 0
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −3.50000 + 6.06218i −0.802955 + 1.39076i 0.114708 + 0.993399i \(0.463407\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) 0 0
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) −1.00000 + 1.73205i −0.196116 + 0.339683i
\(27\) 0 0
\(28\) 0 0
\(29\) −4.00000 6.92820i −0.742781 1.28654i −0.951224 0.308500i \(-0.900173\pi\)
0.208443 0.978035i \(-0.433160\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 5.19615i 0.493197 0.854242i −0.506772 0.862080i \(-0.669162\pi\)
0.999969 + 0.00783774i \(0.00249486\pi\)
\(38\) 3.50000 6.06218i 0.567775 0.983415i
\(39\) 0 0
\(40\) 0.500000 + 0.866025i 0.0790569 + 0.136931i
\(41\) 6.00000 10.3923i 0.937043 1.62301i 0.166092 0.986110i \(-0.446885\pi\)
0.770950 0.636895i \(-0.219782\pi\)
\(42\) 0 0
\(43\) 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) −1.00000 + 1.73205i −0.150756 + 0.261116i
\(45\) 0 0
\(46\) −1.50000 2.59808i −0.221163 0.383065i
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.00000 + 3.46410i −0.282843 + 0.489898i
\(51\) 0 0
\(52\) 1.00000 1.73205i 0.138675 0.240192i
\(53\) 2.00000 + 3.46410i 0.274721 + 0.475831i 0.970065 0.242846i \(-0.0780811\pi\)
−0.695344 + 0.718677i \(0.744748\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 4.00000 + 6.92820i 0.525226 + 0.909718i
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) −7.00000 12.1244i −0.819288 1.41905i −0.906208 0.422833i \(-0.861036\pi\)
0.0869195 0.996215i \(-0.472298\pi\)
\(74\) −3.00000 + 5.19615i −0.348743 + 0.604040i
\(75\) 0 0
\(76\) −3.50000 + 6.06218i −0.401478 + 0.695379i
\(77\) 0 0
\(78\) 0 0
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) 0 0
\(82\) −6.00000 + 10.3923i −0.662589 + 1.14764i
\(83\) −6.00000 10.3923i −0.658586 1.14070i −0.980982 0.194099i \(-0.937822\pi\)
0.322396 0.946605i \(-0.395512\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 6.92820i −0.431331 0.747087i
\(87\) 0 0
\(88\) 1.00000 1.73205i 0.106600 0.184637i
\(89\) −7.00000 + 12.1244i −0.741999 + 1.28518i 0.209585 + 0.977790i \(0.432789\pi\)
−0.951584 + 0.307389i \(0.900545\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.50000 + 2.59808i 0.156386 + 0.270868i
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) 7.00000 0.718185
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) 5.50000 9.52628i 0.547270 0.947900i −0.451190 0.892428i \(-0.649000\pi\)
0.998460 0.0554722i \(-0.0176664\pi\)
\(102\) 0 0
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) −1.00000 + 1.73205i −0.0980581 + 0.169842i
\(105\) 0 0
\(106\) −2.00000 3.46410i −0.194257 0.336463i
\(107\) 4.00000 6.92820i 0.386695 0.669775i −0.605308 0.795991i \(-0.706950\pi\)
0.992003 + 0.126217i \(0.0402834\pi\)
\(108\) 0 0
\(109\) −2.00000 3.46410i −0.191565 0.331801i 0.754204 0.656640i \(-0.228023\pi\)
−0.945769 + 0.324840i \(0.894690\pi\)
\(110\) −2.00000 −0.190693
\(111\) 0 0
\(112\) 0 0
\(113\) −0.500000 + 0.866025i −0.0470360 + 0.0814688i −0.888585 0.458712i \(-0.848311\pi\)
0.841549 + 0.540181i \(0.181644\pi\)
\(114\) 0 0
\(115\) 1.50000 2.59808i 0.139876 0.242272i
\(116\) −4.00000 6.92820i −0.371391 0.643268i
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 13.0000 1.17696
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 2.00000 0.175412
\(131\) −7.50000 12.9904i −0.655278 1.13497i −0.981824 0.189794i \(-0.939218\pi\)
0.326546 0.945181i \(-0.394115\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 + 1.73205i −0.0854358 + 0.147979i −0.905577 0.424182i \(-0.860562\pi\)
0.820141 + 0.572161i \(0.193895\pi\)
\(138\) 0 0
\(139\) 4.50000 7.79423i 0.381685 0.661098i −0.609618 0.792695i \(-0.708677\pi\)
0.991303 + 0.131597i \(0.0420106\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.00000 −0.419591
\(143\) 2.00000 + 3.46410i 0.167248 + 0.289683i
\(144\) 0 0
\(145\) −4.00000 + 6.92820i −0.332182 + 0.575356i
\(146\) 7.00000 + 12.1244i 0.579324 + 1.00342i
\(147\) 0 0
\(148\) 3.00000 5.19615i 0.246598 0.427121i
\(149\) 5.00000 + 8.66025i 0.409616 + 0.709476i 0.994847 0.101391i \(-0.0323294\pi\)
−0.585231 + 0.810867i \(0.698996\pi\)
\(150\) 0 0
\(151\) −9.50000 + 16.4545i −0.773099 + 1.33905i 0.162758 + 0.986666i \(0.447961\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 3.50000 6.06218i 0.283887 0.491708i
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000 + 3.46410i 0.160644 + 0.278243i
\(156\) 0 0
\(157\) −11.0000 −0.877896 −0.438948 0.898513i \(-0.644649\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 11.0000 0.875113
\(159\) 0 0
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 0 0
\(162\) 0 0
\(163\) 3.00000 5.19615i 0.234978 0.406994i −0.724288 0.689497i \(-0.757831\pi\)
0.959266 + 0.282503i \(0.0911648\pi\)
\(164\) 6.00000 10.3923i 0.468521 0.811503i
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) −1.00000 + 1.73205i −0.0773823 + 0.134030i −0.902120 0.431486i \(-0.857990\pi\)
0.824737 + 0.565516i \(0.191323\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 4.00000 + 6.92820i 0.304997 + 0.528271i
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 + 1.73205i −0.0753778 + 0.130558i
\(177\) 0 0
\(178\) 7.00000 12.1244i 0.524672 0.908759i
\(179\) −12.0000 20.7846i −0.896922 1.55351i −0.831408 0.555663i \(-0.812464\pi\)
−0.0655145 0.997852i \(-0.520869\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.50000 2.59808i −0.110581 0.191533i
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −7.00000 −0.507833
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) 5.00000 0.359908 0.179954 0.983675i \(-0.442405\pi\)
0.179954 + 0.983675i \(0.442405\pi\)
\(194\) 1.00000 + 1.73205i 0.0717958 + 0.124354i
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −7.00000 12.1244i −0.496217 0.859473i 0.503774 0.863836i \(-0.331945\pi\)
−0.999990 + 0.00436292i \(0.998611\pi\)
\(200\) −2.00000 + 3.46410i −0.141421 + 0.244949i
\(201\) 0 0
\(202\) −5.50000 + 9.52628i −0.386979 + 0.670267i
\(203\) 0 0
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) −4.00000 6.92820i −0.278693 0.482711i
\(207\) 0 0
\(208\) 1.00000 1.73205i 0.0693375 0.120096i
\(209\) −7.00000 12.1244i −0.484200 0.838659i
\(210\) 0 0
\(211\) 11.0000 19.0526i 0.757271 1.31163i −0.186966 0.982366i \(-0.559865\pi\)
0.944237 0.329266i \(-0.106801\pi\)
\(212\) 2.00000 + 3.46410i 0.137361 + 0.237915i
\(213\) 0 0
\(214\) −4.00000 + 6.92820i −0.273434 + 0.473602i
\(215\) 4.00000 6.92820i 0.272798 0.472500i
\(216\) 0 0
\(217\) 0 0
\(218\) 2.00000 + 3.46410i 0.135457 + 0.234619i
\(219\) 0 0
\(220\) 2.00000 0.134840
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 1.73205i −0.0669650 0.115987i 0.830599 0.556871i \(-0.187998\pi\)
−0.897564 + 0.440884i \(0.854665\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.500000 0.866025i 0.0332595 0.0576072i
\(227\) −8.50000 + 14.7224i −0.564165 + 0.977162i 0.432962 + 0.901412i \(0.357468\pi\)
−0.997127 + 0.0757500i \(0.975865\pi\)
\(228\) 0 0
\(229\) −6.50000 11.2583i −0.429532 0.743971i 0.567300 0.823511i \(-0.307988\pi\)
−0.996832 + 0.0795401i \(0.974655\pi\)
\(230\) −1.50000 + 2.59808i −0.0989071 + 0.171312i
\(231\) 0 0
\(232\) 4.00000 + 6.92820i 0.262613 + 0.454859i
\(233\) 0.500000 0.866025i 0.0327561 0.0567352i −0.849183 0.528099i \(-0.822905\pi\)
0.881939 + 0.471364i \(0.156238\pi\)
\(234\) 0 0
\(235\) 4.00000 + 6.92820i 0.260931 + 0.451946i
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) 0 0
\(239\) −7.50000 + 12.9904i −0.485135 + 0.840278i −0.999854 0.0170808i \(-0.994563\pi\)
0.514719 + 0.857359i \(0.327896\pi\)
\(240\) 0 0
\(241\) 5.00000 8.66025i 0.322078 0.557856i −0.658838 0.752285i \(-0.728952\pi\)
0.980917 + 0.194429i \(0.0622852\pi\)
\(242\) −3.50000 6.06218i −0.224989 0.389692i
\(243\) 0 0
\(244\) −13.0000 −0.832240
\(245\) 0 0
\(246\) 0 0
\(247\) 7.00000 + 12.1244i 0.445399 + 0.771454i
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) 9.00000 0.569210
\(251\) 7.00000 0.441836 0.220918 0.975292i \(-0.429095\pi\)
0.220918 + 0.975292i \(0.429095\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 19.0000 1.19217
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.00000 6.92820i −0.249513 0.432169i 0.713878 0.700270i \(-0.246937\pi\)
−0.963391 + 0.268101i \(0.913604\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2.00000 −0.124035
\(261\) 0 0
\(262\) 7.50000 + 12.9904i 0.463352 + 0.802548i
\(263\) 9.50000 16.4545i 0.585795 1.01463i −0.408981 0.912543i \(-0.634116\pi\)
0.994776 0.102084i \(-0.0325510\pi\)
\(264\) 0 0
\(265\) 2.00000 3.46410i 0.122859 0.212798i
\(266\) 0 0
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) −3.50000 6.06218i −0.213399 0.369618i 0.739377 0.673291i \(-0.235120\pi\)
−0.952776 + 0.303674i \(0.901787\pi\)
\(270\) 0 0
\(271\) 7.00000 12.1244i 0.425220 0.736502i −0.571221 0.820796i \(-0.693530\pi\)
0.996441 + 0.0842940i \(0.0268635\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 1.00000 1.73205i 0.0604122 0.104637i
\(275\) 4.00000 + 6.92820i 0.241209 + 0.417786i
\(276\) 0 0
\(277\) 1.00000 1.73205i 0.0600842 0.104069i −0.834419 0.551131i \(-0.814196\pi\)
0.894503 + 0.447062i \(0.147530\pi\)
\(278\) −4.50000 + 7.79423i −0.269892 + 0.467467i
\(279\) 0 0
\(280\) 0 0
\(281\) −7.50000 12.9904i −0.447412 0.774941i 0.550804 0.834634i \(-0.314321\pi\)
−0.998217 + 0.0596933i \(0.980988\pi\)
\(282\) 0 0
\(283\) −25.0000 −1.48610 −0.743048 0.669238i \(-0.766621\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) 5.00000 0.296695
\(285\) 0 0
\(286\) −2.00000 3.46410i −0.118262 0.204837i
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 4.00000 6.92820i 0.234888 0.406838i
\(291\) 0 0
\(292\) −7.00000 12.1244i −0.409644 0.709524i
\(293\) −4.50000 + 7.79423i −0.262893 + 0.455344i −0.967009 0.254741i \(-0.918010\pi\)
0.704117 + 0.710084i \(0.251343\pi\)
\(294\) 0 0
\(295\) −2.00000 3.46410i −0.116445 0.201688i
\(296\) −3.00000 + 5.19615i −0.174371 + 0.302020i
\(297\) 0 0
\(298\) −5.00000 8.66025i −0.289642 0.501675i
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 0 0
\(302\) 9.50000 16.4545i 0.546664 0.946849i
\(303\) 0 0
\(304\) −3.50000 + 6.06218i −0.200739 + 0.347690i
\(305\) 6.50000 + 11.2583i 0.372189 + 0.644650i
\(306\) 0 0
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.00000 3.46410i −0.113592 0.196748i
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 11.0000 0.620766
\(315\) 0 0
\(316\) −11.0000 −0.618798
\(317\) −24.0000 −1.34797 −0.673987 0.738743i \(-0.735420\pi\)
−0.673987 + 0.738743i \(0.735420\pi\)
\(318\) 0 0
\(319\) 16.0000 0.895828
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −4.00000 6.92820i −0.221880 0.384308i
\(326\) −3.00000 + 5.19615i −0.166155 + 0.287788i
\(327\) 0 0
\(328\) −6.00000 + 10.3923i −0.331295 + 0.573819i
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −6.00000 10.3923i −0.329293 0.570352i
\(333\) 0 0
\(334\) 1.00000 1.73205i 0.0547176 0.0947736i
\(335\) 1.00000 + 1.73205i 0.0546358 + 0.0946320i
\(336\) 0 0
\(337\) 11.0000 19.0526i 0.599208 1.03786i −0.393730 0.919226i \(-0.628816\pi\)
0.992938 0.118633i \(-0.0378512\pi\)
\(338\) −4.50000 7.79423i −0.244768 0.423950i
\(339\) 0 0
\(340\) 0 0
\(341\) 4.00000 6.92820i 0.216612 0.375183i
\(342\) 0 0
\(343\) 0 0
\(344\) −4.00000 6.92820i −0.215666 0.373544i
\(345\) 0 0
\(346\) 22.0000 1.18273
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −15.0000 25.9808i −0.802932 1.39072i −0.917679 0.397324i \(-0.869939\pi\)
0.114747 0.993395i \(-0.463394\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00000 1.73205i 0.0533002 0.0923186i
\(353\) −12.0000 + 20.7846i −0.638696 + 1.10625i 0.347024 + 0.937856i \(0.387192\pi\)
−0.985719 + 0.168397i \(0.946141\pi\)
\(354\) 0 0
\(355\) −2.50000 4.33013i −0.132686 0.229819i
\(356\) −7.00000 + 12.1244i −0.370999 + 0.642590i
\(357\) 0 0
\(358\) 12.0000 + 20.7846i 0.634220 + 1.09850i
\(359\) 14.5000 25.1147i 0.765281 1.32551i −0.174817 0.984601i \(-0.555933\pi\)
0.940098 0.340904i \(-0.110733\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 7.00000 0.367912
\(363\) 0 0
\(364\) 0 0
\(365\) −7.00000 + 12.1244i −0.366397 + 0.634618i
\(366\) 0 0
\(367\) −16.0000 + 27.7128i −0.835193 + 1.44660i 0.0586798 + 0.998277i \(0.481311\pi\)
−0.893873 + 0.448320i \(0.852022\pi\)
\(368\) 1.50000 + 2.59808i 0.0781929 + 0.135434i
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) 0 0
\(372\) 0 0
\(373\) 16.0000 + 27.7128i 0.828449 + 1.43492i 0.899255 + 0.437425i \(0.144109\pi\)
−0.0708063 + 0.997490i \(0.522557\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) −16.0000 −0.824042
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 7.00000 0.359092
\(381\) 0 0
\(382\) 3.00000 0.153493
\(383\) 3.00000 + 5.19615i 0.153293 + 0.265511i 0.932436 0.361335i \(-0.117679\pi\)
−0.779143 + 0.626846i \(0.784346\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.00000 −0.254493
\(387\) 0 0
\(388\) −1.00000 1.73205i −0.0507673 0.0879316i
\(389\) −15.0000 + 25.9808i −0.760530 + 1.31728i 0.182047 + 0.983290i \(0.441728\pi\)
−0.942578 + 0.333987i \(0.891606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −12.0000 −0.604551
\(395\) 5.50000 + 9.52628i 0.276735 + 0.479319i
\(396\) 0 0
\(397\) 7.00000 12.1244i 0.351320 0.608504i −0.635161 0.772380i \(-0.719066\pi\)
0.986481 + 0.163876i \(0.0523996\pi\)
\(398\) 7.00000 + 12.1244i 0.350878 + 0.607739i
\(399\) 0 0
\(400\) 2.00000 3.46410i 0.100000 0.173205i
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) −4.00000 + 6.92820i −0.199254 + 0.345118i
\(404\) 5.50000 9.52628i 0.273635 0.473950i
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 + 10.3923i 0.297409 + 0.515127i
\(408\) 0 0
\(409\) 24.0000 1.18672 0.593362 0.804936i \(-0.297800\pi\)
0.593362 + 0.804936i \(0.297800\pi\)
\(410\) 12.0000 0.592638
\(411\) 0 0
\(412\) 4.00000 + 6.92820i 0.197066 + 0.341328i
\(413\) 0 0
\(414\) 0 0
\(415\) −6.00000 + 10.3923i −0.294528 + 0.510138i
\(416\) −1.00000 + 1.73205i −0.0490290 + 0.0849208i
\(417\) 0 0
\(418\) 7.00000 + 12.1244i 0.342381 + 0.593022i
\(419\) 2.50000 4.33013i 0.122133 0.211541i −0.798476 0.602027i \(-0.794360\pi\)
0.920609 + 0.390487i \(0.127693\pi\)
\(420\) 0 0
\(421\) 18.0000 + 31.1769i 0.877266 + 1.51947i 0.854329 + 0.519733i \(0.173969\pi\)
0.0229375 + 0.999737i \(0.492698\pi\)
\(422\) −11.0000 + 19.0526i −0.535472 + 0.927464i
\(423\) 0 0
\(424\) −2.00000 3.46410i −0.0971286 0.168232i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 4.00000 6.92820i 0.193347 0.334887i
\(429\) 0 0
\(430\) −4.00000 + 6.92820i −0.192897 + 0.334108i
\(431\) 16.0000 + 27.7128i 0.770693 + 1.33488i 0.937184 + 0.348836i \(0.113423\pi\)
−0.166491 + 0.986043i \(0.553244\pi\)
\(432\) 0 0
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.00000 3.46410i −0.0957826 0.165900i
\(437\) −21.0000 −1.00457
\(438\) 0 0
\(439\) 36.0000 1.71819 0.859093 0.511819i \(-0.171028\pi\)
0.859093 + 0.511819i \(0.171028\pi\)
\(440\) −2.00000 −0.0953463
\(441\) 0 0
\(442\) 0 0
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) 14.0000 0.663664
\(446\) 1.00000 + 1.73205i 0.0473514 + 0.0820150i
\(447\) 0 0
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 12.0000 + 20.7846i 0.565058 + 0.978709i
\(452\) −0.500000 + 0.866025i −0.0235180 + 0.0407344i
\(453\) 0 0
\(454\) 8.50000 14.7224i 0.398925 0.690958i
\(455\) 0 0
\(456\) 0 0
\(457\) 17.0000 0.795226 0.397613 0.917553i \(-0.369839\pi\)
0.397613 + 0.917553i \(0.369839\pi\)
\(458\) 6.50000 + 11.2583i 0.303725 + 0.526067i
\(459\) 0 0
\(460\) 1.50000 2.59808i 0.0699379 0.121136i
\(461\) 4.50000 + 7.79423i 0.209586 + 0.363013i 0.951584 0.307388i \(-0.0994551\pi\)
−0.741998 + 0.670402i \(0.766122\pi\)
\(462\) 0 0
\(463\) 0.500000 0.866025i 0.0232370 0.0402476i −0.854173 0.519989i \(-0.825936\pi\)
0.877410 + 0.479741i \(0.159269\pi\)
\(464\) −4.00000 6.92820i −0.185695 0.321634i
\(465\) 0 0
\(466\) −0.500000 + 0.866025i −0.0231621 + 0.0401179i
\(467\) 14.0000 24.2487i 0.647843 1.12210i −0.335794 0.941935i \(-0.609005\pi\)
0.983637 0.180161i \(-0.0576619\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −4.00000 6.92820i −0.184506 0.319574i
\(471\) 0 0
\(472\) −4.00000 −0.184115
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 14.0000 + 24.2487i 0.642364 + 1.11261i
\(476\) 0 0
\(477\) 0 0
\(478\) 7.50000 12.9904i 0.343042 0.594166i
\(479\) −12.0000 + 20.7846i −0.548294 + 0.949673i 0.450098 + 0.892979i \(0.351389\pi\)
−0.998392 + 0.0566937i \(0.981944\pi\)
\(480\) 0 0
\(481\) −6.00000 10.3923i −0.273576 0.473848i
\(482\) −5.00000 + 8.66025i −0.227744 + 0.394464i
\(483\) 0 0
\(484\) 3.50000 + 6.06218i 0.159091 + 0.275554i
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) −12.5000 21.6506i −0.566429 0.981084i −0.996915 0.0784867i \(-0.974991\pi\)
0.430486 0.902597i \(-0.358342\pi\)
\(488\) 13.0000 0.588482
\(489\) 0 0
\(490\) 0 0
\(491\) 3.00000 5.19615i 0.135388 0.234499i −0.790358 0.612646i \(-0.790105\pi\)
0.925746 + 0.378147i \(0.123439\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −7.00000 12.1244i −0.314945 0.545501i
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) −12.0000 20.7846i −0.537194 0.930447i −0.999054 0.0434940i \(-0.986151\pi\)
0.461860 0.886953i \(-0.347182\pi\)
\(500\) −9.00000 −0.402492
\(501\) 0 0
\(502\) −7.00000 −0.312425
\(503\) 14.0000 0.624229 0.312115 0.950044i \(-0.398963\pi\)
0.312115 + 0.950044i \(0.398963\pi\)
\(504\) 0 0
\(505\) −11.0000 −0.489494
\(506\) 6.00000 0.266733
\(507\) 0 0
\(508\) −19.0000 −0.842989
\(509\) 17.0000 + 29.4449i 0.753512 + 1.30512i 0.946111 + 0.323843i \(0.104975\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 4.00000 + 6.92820i 0.176432 + 0.305590i
\(515\) 4.00000 6.92820i 0.176261 0.305293i
\(516\) 0 0
\(517\) 8.00000 13.8564i 0.351840 0.609404i
\(518\) 0 0
\(519\) 0 0
\(520\) 2.00000 0.0877058
\(521\) −7.00000 12.1244i −0.306676 0.531178i 0.670957 0.741496i \(-0.265883\pi\)
−0.977633 + 0.210318i \(0.932550\pi\)
\(522\) 0 0
\(523\) 17.5000 30.3109i 0.765222 1.32540i −0.174908 0.984585i \(-0.555963\pi\)
0.940129 0.340818i \(-0.110704\pi\)
\(524\) −7.50000 12.9904i −0.327639 0.567487i
\(525\) 0 0
\(526\) −9.50000 + 16.4545i −0.414220 + 0.717450i
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) −2.00000 + 3.46410i −0.0868744 + 0.150471i
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 20.7846i −0.519778 0.900281i
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 2.00000 0.0863868
\(537\) 0 0
\(538\) 3.50000 + 6.06218i 0.150896 + 0.261359i
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0000 17.3205i 0.429934 0.744667i −0.566933 0.823764i \(-0.691870\pi\)
0.996867 + 0.0790969i \(0.0252036\pi\)
\(542\) −7.00000 + 12.1244i −0.300676 + 0.520786i
\(543\) 0 0
\(544\) 0 0
\(545\) −2.00000 + 3.46410i −0.0856706 + 0.148386i
\(546\) 0 0
\(547\) 4.00000 + 6.92820i 0.171028 + 0.296229i 0.938779 0.344519i \(-0.111958\pi\)
−0.767752 + 0.640747i \(0.778625\pi\)
\(548\) −1.00000 + 1.73205i −0.0427179 + 0.0739895i
\(549\) 0 0
\(550\) −4.00000 6.92820i −0.170561 0.295420i
\(551\) 56.0000 2.38568
\(552\) 0 0
\(553\) 0 0
\(554\) −1.00000 + 1.73205i −0.0424859 + 0.0735878i
\(555\) 0 0
\(556\) 4.50000 7.79423i 0.190843 0.330549i
\(557\) 9.00000 + 15.5885i 0.381342 + 0.660504i 0.991254 0.131965i \(-0.0421286\pi\)
−0.609912 + 0.792469i \(0.708795\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 7.50000 + 12.9904i 0.316368 + 0.547966i
\(563\) 11.0000 0.463595 0.231797 0.972764i \(-0.425539\pi\)
0.231797 + 0.972764i \(0.425539\pi\)
\(564\) 0 0
\(565\) 1.00000 0.0420703
\(566\) 25.0000 1.05083
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 2.00000 + 3.46410i 0.0836242 + 0.144841i
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 14.0000 + 24.2487i 0.582828 + 1.00949i 0.995142 + 0.0984456i \(0.0313871\pi\)
−0.412315 + 0.911041i \(0.635280\pi\)
\(578\) −8.50000 + 14.7224i −0.353553 + 0.612372i
\(579\) 0 0
\(580\) −4.00000 + 6.92820i −0.166091 + 0.287678i
\(581\) 0 0
\(582\) 0 0
\(583\) −8.00000 −0.331326
\(584\) 7.00000 + 12.1244i 0.289662 + 0.501709i
\(585\) 0 0
\(586\) 4.50000 7.79423i 0.185893 0.321977i
\(587\) 11.5000 + 19.9186i 0.474656 + 0.822128i 0.999579 0.0290218i \(-0.00923921\pi\)
−0.524923 + 0.851150i \(0.675906\pi\)
\(588\) 0 0
\(589\) 14.0000 24.2487i 0.576860 0.999151i
\(590\) 2.00000 + 3.46410i 0.0823387 + 0.142615i
\(591\) 0 0
\(592\) 3.00000 5.19615i 0.123299 0.213561i
\(593\) −21.0000 + 36.3731i −0.862367 + 1.49366i 0.00727173 + 0.999974i \(0.497685\pi\)
−0.869638 + 0.493689i \(0.835648\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.00000 + 8.66025i 0.204808 + 0.354738i
\(597\) 0 0
\(598\) −6.00000 −0.245358
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 13.0000 + 22.5167i 0.530281 + 0.918474i 0.999376 + 0.0353259i \(0.0112469\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −9.50000 + 16.4545i −0.386550 + 0.669523i
\(605\) 3.50000 6.06218i 0.142295 0.246463i
\(606\) 0 0
\(607\) −3.00000 5.19615i −0.121766 0.210905i 0.798698 0.601732i \(-0.205522\pi\)
−0.920464 + 0.390827i \(0.872189\pi\)
\(608\) 3.50000 6.06218i 0.141944 0.245854i
\(609\) 0 0
\(610\) −6.50000 11.2583i −0.263177 0.455836i
\(611\) −8.00000 + 13.8564i −0.323645 + 0.560570i
\(612\) 0 0
\(613\) 5.00000 + 8.66025i 0.201948 + 0.349784i 0.949156 0.314806i \(-0.101939\pi\)
−0.747208 + 0.664590i \(0.768606\pi\)
\(614\) 7.00000 0.282497
\(615\) 0 0
\(616\) 0 0
\(617\) −11.0000 + 19.0526i −0.442843 + 0.767027i −0.997899 0.0647859i \(-0.979364\pi\)
0.555056 + 0.831813i \(0.312697\pi\)
\(618\) 0 0
\(619\) −5.50000 + 9.52628i −0.221064 + 0.382893i −0.955131 0.296183i \(-0.904286\pi\)
0.734068 + 0.679076i \(0.237620\pi\)
\(620\) 2.00000 + 3.46410i 0.0803219 + 0.139122i
\(621\) 0 0
\(622\) 10.0000 0.400963
\(623\) 0 0
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) −11.0000 −0.438948
\(629\) 0 0
\(630\) 0 0
\(631\) 9.00000 0.358284 0.179142 0.983823i \(-0.442668\pi\)
0.179142 + 0.983823i \(0.442668\pi\)
\(632\) 11.0000 0.437557
\(633\) 0 0
\(634\) 24.0000 0.953162
\(635\) 9.50000 + 16.4545i 0.376996 + 0.652976i
\(636\) 0 0
\(637\) 0 0
\(638\) −16.0000 −0.633446
\(639\) 0 0
\(640\) 0.500000 + 0.866025i 0.0197642 + 0.0342327i
\(641\) 23.5000 40.7032i 0.928194 1.60768i 0.141852 0.989888i \(-0.454694\pi\)
0.786342 0.617792i \(-0.211973\pi\)
\(642\) 0 0
\(643\) −6.00000 + 10.3923i −0.236617 + 0.409832i −0.959741 0.280885i \(-0.909372\pi\)
0.723124 + 0.690718i \(0.242705\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.0000 + 36.3731i 0.825595 + 1.42997i 0.901464 + 0.432855i \(0.142494\pi\)
−0.0758684 + 0.997118i \(0.524173\pi\)
\(648\) 0 0
\(649\) −4.00000 + 6.92820i −0.157014 + 0.271956i
\(650\) 4.00000 + 6.92820i 0.156893 + 0.271746i
\(651\) 0 0
\(652\) 3.00000 5.19615i 0.117489 0.203497i
\(653\) −16.0000 27.7128i −0.626128 1.08449i −0.988322 0.152383i \(-0.951305\pi\)
0.362193 0.932103i \(-0.382028\pi\)
\(654\) 0 0
\(655\) −7.50000 + 12.9904i −0.293049 + 0.507576i
\(656\) 6.00000 10.3923i 0.234261 0.405751i
\(657\) 0 0
\(658\) 0 0
\(659\) 10.0000 + 17.3205i 0.389545 + 0.674711i 0.992388 0.123148i \(-0.0392990\pi\)
−0.602844 + 0.797859i \(0.705966\pi\)
\(660\) 0 0
\(661\) 31.0000 1.20576 0.602880 0.797832i \(-0.294020\pi\)
0.602880 + 0.797832i \(0.294020\pi\)
\(662\) 4.00000 0.155464
\(663\) 0 0
\(664\) 6.00000 + 10.3923i 0.232845 + 0.403300i
\(665\) 0 0
\(666\) 0 0
\(667\) 12.0000 20.7846i 0.464642 0.804783i
\(668\) −1.00000 + 1.73205i −0.0386912 + 0.0670151i
\(669\) 0 0
\(670\) −1.00000 1.73205i −0.0386334 0.0669150i
\(671\) 13.0000 22.5167i 0.501859 0.869246i
\(672\) 0 0
\(673\) 0.500000 + 0.866025i 0.0192736 + 0.0333828i 0.875501 0.483216i \(-0.160531\pi\)
−0.856228 + 0.516599i \(0.827198\pi\)
\(674\) −11.0000 + 19.0526i −0.423704 + 0.733877i
\(675\) 0 0
\(676\) 4.50000 + 7.79423i 0.173077 + 0.299778i
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) −4.00000 + 6.92820i −0.153168 + 0.265295i
\(683\) −5.00000 8.66025i −0.191320 0.331375i 0.754368 0.656452i \(-0.227943\pi\)
−0.945688 + 0.325076i \(0.894610\pi\)
\(684\) 0 0
\(685\) 2.00000 0.0764161
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000 + 6.92820i 0.152499 + 0.264135i
\(689\) 8.00000 0.304776
\(690\) 0 0
\(691\) 29.0000 1.10321 0.551606 0.834105i \(-0.314015\pi\)
0.551606 + 0.834105i \(0.314015\pi\)
\(692\) −22.0000 −0.836315
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −9.00000 −0.341389
\(696\) 0 0
\(697\) 0 0
\(698\) 15.0000 + 25.9808i 0.567758 + 0.983386i
\(699\) 0 0
\(700\) 0 0
\(701\) −2.00000 −0.0755390 −0.0377695 0.999286i \(-0.512025\pi\)
−0.0377695 + 0.999286i \(0.512025\pi\)
\(702\) 0 0
\(703\) 21.0000 + 36.3731i 0.792030 + 1.37184i
\(704\) −1.00000 + 1.73205i −0.0376889 + 0.0652791i
\(705\) 0 0
\(706\) 12.0000 20.7846i 0.451626 0.782239i
\(707\) 0 0
\(708\) 0 0
\(709\) −32.0000 −1.20179 −0.600893 0.799330i \(-0.705188\pi\)
−0.600893 + 0.799330i \(0.705188\pi\)
\(710\) 2.50000 + 4.33013i 0.0938233 + 0.162507i
\(711\) 0 0
\(712\) 7.00000 12.1244i 0.262336 0.454379i
\(713\) −6.00000 10.3923i −0.224702 0.389195i
\(714\) 0 0
\(715\) 2.00000 3.46410i 0.0747958 0.129550i
\(716\) −12.0000 20.7846i −0.448461 0.776757i
\(717\) 0 0
\(718\) −14.5000 + 25.1147i −0.541135 + 0.937274i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 15.0000 + 25.9808i 0.558242 + 0.966904i
\(723\) 0 0
\(724\) −7.00000 −0.260153
\(725\) −32.0000 −1.18845
\(726\) 0 0
\(727\) 13.0000 + 22.5167i 0.482143 + 0.835097i 0.999790 0.0204978i \(-0.00652512\pi\)
−0.517647 + 0.855595i \(0.673192\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 7.00000 12.1244i 0.259082 0.448743i
\(731\) 0 0
\(732\) 0 0
\(733\) 0.500000 + 0.866025i 0.0184679 + 0.0319874i 0.875112 0.483921i \(-0.160788\pi\)
−0.856644 + 0.515908i \(0.827454\pi\)
\(734\) 16.0000 27.7128i 0.590571 1.02290i
\(735\) 0 0
\(736\) −1.50000 2.59808i −0.0552907 0.0957664i
\(737\) 2.00000 3.46410i 0.0736709 0.127602i
\(738\) 0 0
\(739\) 19.0000 + 32.9090i 0.698926 + 1.21058i 0.968839 + 0.247691i \(0.0796718\pi\)
−0.269913 + 0.962885i \(0.586995\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 41.5692i 0.880475 1.52503i 0.0296605 0.999560i \(-0.490557\pi\)
0.850814 0.525467i \(-0.176109\pi\)
\(744\) 0 0
\(745\) 5.00000 8.66025i 0.183186 0.317287i
\(746\) −16.0000 27.7128i −0.585802 1.01464i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 19.5000 + 33.7750i 0.711565 + 1.23247i 0.964269 + 0.264923i \(0.0853467\pi\)
−0.252704 + 0.967544i \(0.581320\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) 16.0000 0.582686
\(755\) 19.0000 0.691481
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 12.0000 0.435860
\(759\) 0 0
\(760\) −7.00000 −0.253917
\(761\) 10.0000 + 17.3205i 0.362500 + 0.627868i 0.988372 0.152058i \(-0.0485900\pi\)
−0.625872 + 0.779926i \(0.715257\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −3.00000 −0.108536
\(765\) 0 0
\(766\) −3.00000 5.19615i −0.108394 0.187745i
\(767\) 4.00000 6.92820i 0.144432 0.250163i
\(768\) 0 0
\(769\) 1.00000 1.73205i 0.0360609 0.0624593i −0.847432 0.530904i \(-0.821852\pi\)
0.883493 + 0.468445i \(0.155186\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.00000 0.179954
\(773\) −10.5000 18.1865i −0.377659 0.654124i 0.613062 0.790034i \(-0.289937\pi\)
−0.990721 + 0.135910i \(0.956604\pi\)
\(774\) 0 0
\(775\) −8.00000 + 13.8564i −0.287368 + 0.497737i
\(776\) 1.00000 + 1.73205i 0.0358979 + 0.0621770i
\(777\) 0 0
\(778\) 15.0000 25.9808i 0.537776 0.931455i
\(779\) 42.0000 + 72.7461i 1.50481 + 2.60640i
\(780\) 0 0
\(781\) −5.00000 + 8.66025i −0.178914 + 0.309888i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.50000 + 9.52628i 0.196303 + 0.340007i
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 12.0000 0.427482
\(789\) 0 0
\(790\) −5.50000 9.52628i −0.195681 0.338930i
\(791\) 0 0
\(792\) 0 0
\(793\) −13.0000 + 22.5167i −0.461644 + 0.799590i
\(794\) −7.00000 + 12.1244i −0.248421 + 0.430277i
\(795\) 0 0
\(796\) −7.00000 12.1244i −0.248108 0.429736i
\(797\) −25.5000 + 44.1673i −0.903256 + 1.56449i −0.0800155 + 0.996794i \(0.525497\pi\)
−0.823241 + 0.567692i \(0.807836\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.00000 + 3.46410i −0.0707107 + 0.122474i
\(801\) 0 0
\(802\) −1.50000 2.59808i −0.0529668 0.0917413i
\(803\) 28.0000 0.988099
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 6.92820i 0.140894 0.244036i
\(807\) 0 0
\(808\) −5.50000 + 9.52628i −0.193489 + 0.335133i
\(809\) 9.00000 + 15.5885i 0.316423 + 0.548061i 0.979739 0.200279i \(-0.0641847\pi\)
−0.663316 + 0.748340i \(0.730851\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −6.00000 10.3923i −0.210300 0.364250i
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) −56.0000 −1.95919
\(818\) −24.0000 −0.839140
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) 32.0000 1.11681 0.558404 0.829569i \(-0.311414\pi\)
0.558404 + 0.829569i \(0.311414\pi\)
\(822\) 0 0
\(823\) −44.0000 −1.53374 −0.766872 0.641800i \(-0.778188\pi\)
−0.766872 + 0.641800i \(0.778188\pi\)
\(824\) −4.00000 6.92820i −0.139347 0.241355i
\(825\) 0 0
\(826\) 0 0
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 0 0
\(829\) −7.00000 12.1244i −0.243120 0.421096i 0.718481 0.695546i \(-0.244838\pi\)
−0.961601 + 0.274450i \(0.911504\pi\)
\(830\) 6.00000 10.3923i 0.208263 0.360722i
\(831\) 0 0
\(832\) 1.00000 1.73205i 0.0346688 0.0600481i
\(833\) 0 0
\(834\) 0 0
\(835\) 2.00000 0.0692129
\(836\) −7.00000 12.1244i −0.242100 0.419330i
\(837\) 0 0
\(838\) −2.50000 + 4.33013i −0.0863611 + 0.149582i
\(839\) 15.0000 + 25.9808i 0.517858 + 0.896956i 0.999785 + 0.0207443i \(0.00660359\pi\)
−0.481927 + 0.876211i \(0.660063\pi\)
\(840\) 0 0
\(841\) −17.5000 + 30.3109i −0.603448 + 1.04520i
\(842\) −18.0000 31.1769i −0.620321 1.07443i
\(843\) 0 0
\(844\) 11.0000 19.0526i 0.378636 0.655816i
\(845\) 4.50000 7.79423i 0.154805 0.268130i
\(846\) 0 0
\(847\) 0 0
\(848\) 2.00000 + 3.46410i 0.0686803 + 0.118958i
\(849\) 0 0
\(850\) 0 0
\(851\) 18.0000 0.617032
\(852\) 0 0
\(853\) −18.5000 32.0429i −0.633428 1.09713i −0.986846 0.161664i \(-0.948314\pi\)
0.353418 0.935466i \(-0.385019\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −4.00000 + 6.92820i −0.136717 + 0.236801i
\(857\) 9.00000 15.5885i 0.307434 0.532492i −0.670366 0.742030i \(-0.733863\pi\)
0.977800 + 0.209539i \(0.0671963\pi\)
\(858\) 0 0
\(859\) 18.0000 + 31.1769i 0.614152 + 1.06374i 0.990533 + 0.137277i \(0.0438352\pi\)
−0.376381 + 0.926465i \(0.622831\pi\)
\(860\) 4.00000 6.92820i 0.136399 0.236250i
\(861\) 0 0
\(862\) −16.0000 27.7128i −0.544962 0.943902i
\(863\) 28.5000 49.3634i 0.970151 1.68035i 0.275064 0.961426i \(-0.411301\pi\)
0.695087 0.718925i \(-0.255366\pi\)
\(864\) 0 0
\(865\) 11.0000 + 19.0526i 0.374011 + 0.647806i
\(866\) −28.0000 −0.951479
\(867\) 0 0
\(868\) 0 0
\(869\) 11.0000 19.0526i 0.373149 0.646314i
\(870\) 0 0
\(871\) −2.00000 + 3.46410i −0.0677674 + 0.117377i
\(872\) 2.00000 + 3.46410i 0.0677285 + 0.117309i
\(873\) 0 0
\(874\) 21.0000 0.710336
\(875\) 0 0
\(876\) 0 0
\(877\) −12.0000 20.7846i −0.405211 0.701846i 0.589135 0.808035i \(-0.299469\pi\)
−0.994346 + 0.106188i \(0.966135\pi\)
\(878\) −36.0000 −1.21494
\(879\) 0 0
\(880\) 2.00000 0.0674200
\(881\) 28.0000 0.943344 0.471672 0.881774i \(-0.343651\pi\)
0.471672 + 0.881774i \(0.343651\pi\)
\(882\) 0 0
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) −18.0000 31.1769i −0.604381 1.04682i −0.992149 0.125061i \(-0.960087\pi\)
0.387768 0.921757i \(-0.373246\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −14.0000 −0.469281
\(891\) 0 0
\(892\) −1.00000 1.73205i −0.0334825 0.0579934i
\(893\) 28.0000 48.4974i 0.936984 1.62290i
\(894\) 0 0
\(895\) −12.0000 + 20.7846i −0.401116 + 0.694753i
\(896\) 0 0
\(897\) 0 0
\(898\) 9.00000 0.300334
\(899\) 16.0000 + 27.7128i 0.533630 + 0.924274i
\(900\) 0 0
\(901\) 0 0
\(902\) −12.0000 20.7846i −0.399556 0.692052i
\(903\) 0 0
\(904\) 0.500000 0.866025i 0.0166298 0.0288036i
\(905\) 3.50000 + 6.06218i 0.116344 + 0.201514i
\(906\) 0 0
\(907\) 1.00000 1.73205i 0.0332045 0.0575118i −0.848946 0.528480i \(-0.822762\pi\)
0.882150 + 0.470968i \(0.156095\pi\)
\(908\) −8.50000 + 14.7224i −0.282082 + 0.488581i
\(909\) 0 0
\(910\) 0 0
\(911\) −0.500000 0.866025i −0.0165657 0.0286927i 0.857624 0.514278i \(-0.171940\pi\)
−0.874189 + 0.485585i \(0.838607\pi\)
\(912\) 0 0
\(913\) 24.0000 0.794284
\(914\) −17.0000 −0.562310
\(915\) 0 0
\(916\) −6.50000 11.2583i −0.214766 0.371986i
\(917\) 0 0
\(918\) 0 0
\(919\) −7.50000 + 12.9904i −0.247402 + 0.428513i −0.962804 0.270200i \(-0.912910\pi\)
0.715402 + 0.698713i \(0.246244\pi\)
\(920\) −1.50000 + 2.59808i −0.0494535 + 0.0856560i
\(921\) 0 0
\(922\) −4.50000 7.79423i −0.148200 0.256689i
\(923\) 5.00000 8.66025i 0.164577 0.285056i
\(924\) 0 0
\(925\) −12.0000 20.7846i −0.394558 0.683394i
\(926\) −0.500000 + 0.866025i −0.0164310 + 0.0284594i
\(927\) 0 0
\(928\) 4.00000 + 6.92820i 0.131306 + 0.227429i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.500000 0.866025i 0.0163780 0.0283676i
\(933\) 0 0
\(934\) −14.0000 + 24.2487i −0.458094 + 0.793442i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4.00000 + 6.92820i 0.130466 + 0.225973i
\(941\) −3.00000 −0.0977972 −0.0488986 0.998804i \(-0.515571\pi\)
−0.0488986 + 0.998804i \(0.515571\pi\)
\(942\) 0 0
\(943\) 36.0000 1.17232
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) −10.0000 −0.324956 −0.162478 0.986712i \(-0.551949\pi\)
−0.162478 + 0.986712i \(0.551949\pi\)
\(948\) 0 0
\(949\) −28.0000 −0.908918
\(950\) −14.0000 24.2487i −0.454220 0.786732i
\(951\) 0 0
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) 1.50000 + 2.59808i 0.0485389 + 0.0840718i
\(956\) −7.50000 + 12.9904i −0.242567 + 0.420139i
\(957\) 0 0
\(958\) 12.0000 20.7846i 0.387702 0.671520i
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 6.00000 + 10.3923i 0.193448 + 0.335061i
\(963\) 0 0
\(964\) 5.00000 8.66025i 0.161039 0.278928i
\(965\) −2.50000 4.33013i −0.0804778 0.139392i
\(966\) 0 0
\(967\) −6.50000 + 11.2583i −0.209026 + 0.362043i −0.951408 0.307933i \(-0.900363\pi\)
0.742382 + 0.669977i \(0.233696\pi\)
\(968\) −3.50000 6.06218i −0.112494 0.194846i
\(969\) 0 0
\(970\) 1.00000 1.73205i 0.0321081 0.0556128i
\(971\) 17.5000 30.3109i 0.561602 0.972723i −0.435755 0.900065i \(-0.643519\pi\)
0.997357 0.0726575i \(-0.0231480\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 12.5000 + 21.6506i 0.400526 + 0.693731i
\(975\) 0 0
\(976\) −13.0000 −0.416120
\(977\) 2.00000 0.0639857 0.0319928 0.999488i \(-0.489815\pi\)
0.0319928 + 0.999488i \(0.489815\pi\)
\(978\) 0 0
\(979\) −14.0000 24.2487i −0.447442 0.774992i
\(980\) 0 0
\(981\) 0 0
\(982\) −3.00000 + 5.19615i −0.0957338 + 0.165816i
\(983\) 16.0000 27.7128i 0.510321 0.883901i −0.489608 0.871943i \(-0.662860\pi\)
0.999928 0.0119587i \(-0.00380665\pi\)
\(984\) 0 0
\(985\) −6.00000 10.3923i −0.191176 0.331126i
\(986\) 0 0
\(987\) 0 0
\(988\) 7.00000 + 12.1244i 0.222700 + 0.385727i
\(989\) −12.0000 + 20.7846i −0.381578 + 0.660912i
\(990\) 0 0
\(991\) −16.0000 27.7128i −0.508257 0.880327i −0.999954 0.00956046i \(-0.996957\pi\)
0.491698 0.870766i \(-0.336377\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 0 0
\(995\) −7.00000 + 12.1244i −0.221915 + 0.384368i
\(996\) 0 0
\(997\) 8.50000 14.7224i 0.269198 0.466264i −0.699457 0.714675i \(-0.746575\pi\)
0.968655 + 0.248410i \(0.0799082\pi\)
\(998\) 12.0000 + 20.7846i 0.379853 + 0.657925i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.e.a.1549.1 2
3.2 odd 2 882.2.e.j.373.1 2
7.2 even 3 2646.2.f.f.1765.1 2
7.3 odd 6 2646.2.h.g.361.1 2
7.4 even 3 2646.2.h.j.361.1 2
7.5 odd 6 2646.2.f.h.1765.1 2
7.6 odd 2 2646.2.e.d.1549.1 2
9.2 odd 6 882.2.h.a.79.1 2
9.7 even 3 2646.2.h.j.667.1 2
21.2 odd 6 882.2.f.c.589.1 yes 2
21.5 even 6 882.2.f.b.589.1 yes 2
21.11 odd 6 882.2.h.a.67.1 2
21.17 even 6 882.2.h.d.67.1 2
21.20 even 2 882.2.e.f.373.1 2
63.2 odd 6 882.2.f.c.295.1 yes 2
63.5 even 6 7938.2.a.ba.1.1 1
63.11 odd 6 882.2.e.j.655.1 2
63.16 even 3 2646.2.f.f.883.1 2
63.20 even 6 882.2.h.d.79.1 2
63.23 odd 6 7938.2.a.v.1.1 1
63.25 even 3 inner 2646.2.e.a.2125.1 2
63.34 odd 6 2646.2.h.g.667.1 2
63.38 even 6 882.2.e.f.655.1 2
63.40 odd 6 7938.2.a.f.1.1 1
63.47 even 6 882.2.f.b.295.1 2
63.52 odd 6 2646.2.e.d.2125.1 2
63.58 even 3 7938.2.a.k.1.1 1
63.61 odd 6 2646.2.f.h.883.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.f.373.1 2 21.20 even 2
882.2.e.f.655.1 2 63.38 even 6
882.2.e.j.373.1 2 3.2 odd 2
882.2.e.j.655.1 2 63.11 odd 6
882.2.f.b.295.1 2 63.47 even 6
882.2.f.b.589.1 yes 2 21.5 even 6
882.2.f.c.295.1 yes 2 63.2 odd 6
882.2.f.c.589.1 yes 2 21.2 odd 6
882.2.h.a.67.1 2 21.11 odd 6
882.2.h.a.79.1 2 9.2 odd 6
882.2.h.d.67.1 2 21.17 even 6
882.2.h.d.79.1 2 63.20 even 6
2646.2.e.a.1549.1 2 1.1 even 1 trivial
2646.2.e.a.2125.1 2 63.25 even 3 inner
2646.2.e.d.1549.1 2 7.6 odd 2
2646.2.e.d.2125.1 2 63.52 odd 6
2646.2.f.f.883.1 2 63.16 even 3
2646.2.f.f.1765.1 2 7.2 even 3
2646.2.f.h.883.1 2 63.61 odd 6
2646.2.f.h.1765.1 2 7.5 odd 6
2646.2.h.g.361.1 2 7.3 odd 6
2646.2.h.g.667.1 2 63.34 odd 6
2646.2.h.j.361.1 2 7.4 even 3
2646.2.h.j.667.1 2 9.7 even 3
7938.2.a.f.1.1 1 63.40 odd 6
7938.2.a.k.1.1 1 63.58 even 3
7938.2.a.v.1.1 1 63.23 odd 6
7938.2.a.ba.1.1 1 63.5 even 6