Properties

Label 882.2.h
Level $882$
Weight $2$
Character orbit 882.h
Rep. character $\chi_{882}(67,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $80$
Newform subspaces $20$
Sturm bound $336$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 20 \)
Sturm bound: \(336\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(882, [\chi])\).

Total New Old
Modular forms 368 80 288
Cusp forms 304 80 224
Eisenstein series 64 0 64

Trace form

\( 80 q - 40 q^{4} - 8 q^{5} + 4 q^{6} + 6 q^{9} + 16 q^{11} - 2 q^{13} - 14 q^{15} - 40 q^{16} + 14 q^{17} - 20 q^{18} + 4 q^{19} + 4 q^{20} + 4 q^{23} - 2 q^{24} + 80 q^{25} + 16 q^{26} + 18 q^{29} - 18 q^{30}+ \cdots + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(882, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
882.2.h.a 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 882.2.f.b \(-1\) \(-3\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.b 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 18.2.c.a \(-1\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(-1+2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.c 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 18.2.c.a \(-1\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(1-2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.d 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 882.2.f.b \(-1\) \(3\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.e 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.e.b \(-1\) \(3\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}+(2-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.f 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.f.a \(1\) \(-3\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.g 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.f.b \(1\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1-2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.h 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.f.b \(1\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(-1+2\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.i 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.e.a \(1\) \(3\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(2-\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.j 882.h 63.g $2$ $7.043$ \(\Q(\sqrt{-3}) \) None 126.2.f.a \(1\) \(3\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+(1+\zeta_{6})q^{3}-\zeta_{6}q^{4}+\cdots\)
882.2.h.k 882.h 63.g $4$ $7.043$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 126.2.f.c \(-2\) \(-2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{2})q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+\cdots\)
882.2.h.l 882.h 63.g $4$ $7.043$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 126.2.f.c \(-2\) \(2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(\beta _{1}+\beta _{2}-\beta _{3})q^{3}+(-1+\cdots)q^{4}+\cdots\)
882.2.h.m 882.h 63.g $4$ $7.043$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 126.2.f.d \(2\) \(-1\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}-\beta _{1}q^{3}+(-1+\beta _{2})q^{4}+(2+\cdots)q^{5}+\cdots\)
882.2.h.n 882.h 63.g $4$ $7.043$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 126.2.f.d \(2\) \(1\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{2})q^{2}+(\beta _{2}+\beta _{3})q^{3}-\beta _{2}q^{4}+\cdots\)
882.2.h.o 882.h 63.g $6$ $7.043$ 6.0.309123.1 None 126.2.e.d \(-3\) \(-4\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{4})q^{2}+(\beta _{2}+\beta _{3}-\beta _{5})q^{3}+\cdots\)
882.2.h.p 882.h 63.g $6$ $7.043$ 6.0.309123.1 None 126.2.e.c \(3\) \(-2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{2}+(-\beta _{1}-\beta _{2}+\beta _{5})q^{3}+(-1+\cdots)q^{4}+\cdots\)
882.2.h.q 882.h 63.g $8$ $7.043$ \(\Q(\zeta_{24})\) None 882.2.f.q \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_1-1)q^{2}+(\beta_{6}+\beta_{3})q^{3}-\beta_1 q^{4}+\cdots\)
882.2.h.r 882.h 63.g $8$ $7.043$ 8.0.3317760000.3 None 882.2.f.p \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{2}+(\beta _{1}-\beta _{3}-\beta _{5})q^{3}+(-1+\cdots)q^{4}+\cdots\)
882.2.h.s 882.h 63.g $8$ $7.043$ 8.0.\(\cdots\).2 None 882.2.f.r \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{4})q^{2}+(\beta _{3}-\beta _{6})q^{3}+\beta _{4}q^{4}+\cdots\)
882.2.h.t 882.h 63.g $8$ $7.043$ \(\Q(\zeta_{24})\) None 882.2.f.s \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_1+1)q^{2}+(\beta_{7}-\beta_{5})q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(882, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(882, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)