Defining parameters
Level: | \( N \) | \(=\) | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 882.h (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 20 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(882, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 368 | 80 | 288 |
Cusp forms | 304 | 80 | 224 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(882, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(882, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(882, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)