Properties

Label 2646.2.f.f.883.1
Level $2646$
Weight $2$
Character 2646.883
Analytic conductor $21.128$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(883,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,-1,0,0,-2,0,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 883.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2646.883
Dual form 2646.2.f.f.1765.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} -1.00000 q^{8} -1.00000 q^{10} +(-1.00000 + 1.73205i) q^{11} +(1.00000 + 1.73205i) q^{13} +(-0.500000 + 0.866025i) q^{16} +7.00000 q^{19} +(-0.500000 + 0.866025i) q^{20} +(1.00000 + 1.73205i) q^{22} +(1.50000 + 2.59808i) q^{23} +(2.00000 - 3.46410i) q^{25} +2.00000 q^{26} +(-4.00000 + 6.92820i) q^{29} +(2.00000 + 3.46410i) q^{31} +(0.500000 + 0.866025i) q^{32} -6.00000 q^{37} +(3.50000 - 6.06218i) q^{38} +(0.500000 + 0.866025i) q^{40} +(6.00000 + 10.3923i) q^{41} +(4.00000 - 6.92820i) q^{43} +2.00000 q^{44} +3.00000 q^{46} +(4.00000 - 6.92820i) q^{47} +(-2.00000 - 3.46410i) q^{50} +(1.00000 - 1.73205i) q^{52} -4.00000 q^{53} +2.00000 q^{55} +(4.00000 + 6.92820i) q^{58} +(-2.00000 - 3.46410i) q^{59} +(6.50000 - 11.2583i) q^{61} +4.00000 q^{62} +1.00000 q^{64} +(1.00000 - 1.73205i) q^{65} +(1.00000 + 1.73205i) q^{67} +5.00000 q^{71} +14.0000 q^{73} +(-3.00000 + 5.19615i) q^{74} +(-3.50000 - 6.06218i) q^{76} +(5.50000 - 9.52628i) q^{79} +1.00000 q^{80} +12.0000 q^{82} +(-6.00000 + 10.3923i) q^{83} +(-4.00000 - 6.92820i) q^{86} +(1.00000 - 1.73205i) q^{88} +14.0000 q^{89} +(1.50000 - 2.59808i) q^{92} +(-4.00000 - 6.92820i) q^{94} +(-3.50000 - 6.06218i) q^{95} +(-1.00000 + 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - q^{5} - 2 q^{8} - 2 q^{10} - 2 q^{11} + 2 q^{13} - q^{16} + 14 q^{19} - q^{20} + 2 q^{22} + 3 q^{23} + 4 q^{25} + 4 q^{26} - 8 q^{29} + 4 q^{31} + q^{32} - 12 q^{37} + 7 q^{38}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.73205i 0.277350 + 0.480384i 0.970725 0.240192i \(-0.0772105\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 0 0
\(22\) 1.00000 + 1.73205i 0.213201 + 0.369274i
\(23\) 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) 0 0
\(29\) −4.00000 + 6.92820i −0.742781 + 1.28654i 0.208443 + 0.978035i \(0.433160\pi\)
−0.951224 + 0.308500i \(0.900173\pi\)
\(30\) 0 0
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 3.50000 6.06218i 0.567775 0.983415i
\(39\) 0 0
\(40\) 0.500000 + 0.866025i 0.0790569 + 0.136931i
\(41\) 6.00000 + 10.3923i 0.937043 + 1.62301i 0.770950 + 0.636895i \(0.219782\pi\)
0.166092 + 0.986110i \(0.446885\pi\)
\(42\) 0 0
\(43\) 4.00000 6.92820i 0.609994 1.05654i −0.381246 0.924473i \(-0.624505\pi\)
0.991241 0.132068i \(-0.0421616\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) 4.00000 6.92820i 0.583460 1.01058i −0.411606 0.911362i \(-0.635032\pi\)
0.995066 0.0992202i \(-0.0316348\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.00000 3.46410i −0.282843 0.489898i
\(51\) 0 0
\(52\) 1.00000 1.73205i 0.138675 0.240192i
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 4.00000 + 6.92820i 0.525226 + 0.909718i
\(59\) −2.00000 3.46410i −0.260378 0.450988i 0.705965 0.708247i \(-0.250514\pi\)
−0.966342 + 0.257260i \(0.917180\pi\)
\(60\) 0 0
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.00000 1.73205i 0.124035 0.214834i
\(66\) 0 0
\(67\) 1.00000 + 1.73205i 0.122169 + 0.211604i 0.920623 0.390453i \(-0.127682\pi\)
−0.798454 + 0.602056i \(0.794348\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) −3.00000 + 5.19615i −0.348743 + 0.604040i
\(75\) 0 0
\(76\) −3.50000 6.06218i −0.401478 0.695379i
\(77\) 0 0
\(78\) 0 0
\(79\) 5.50000 9.52628i 0.618798 1.07179i −0.370907 0.928670i \(-0.620953\pi\)
0.989705 0.143120i \(-0.0457135\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 12.0000 1.32518
\(83\) −6.00000 + 10.3923i −0.658586 + 1.14070i 0.322396 + 0.946605i \(0.395512\pi\)
−0.980982 + 0.194099i \(0.937822\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 6.92820i −0.431331 0.747087i
\(87\) 0 0
\(88\) 1.00000 1.73205i 0.106600 0.184637i
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.50000 2.59808i 0.156386 0.270868i
\(93\) 0 0
\(94\) −4.00000 6.92820i −0.412568 0.714590i
\(95\) −3.50000 6.06218i −0.359092 0.621966i
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.00000 −0.400000
\(101\) 5.50000 9.52628i 0.547270 0.947900i −0.451190 0.892428i \(-0.649000\pi\)
0.998460 0.0554722i \(-0.0176664\pi\)
\(102\) 0 0
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) −1.00000 1.73205i −0.0980581 0.169842i
\(105\) 0 0
\(106\) −2.00000 + 3.46410i −0.194257 + 0.336463i
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 1.00000 1.73205i 0.0953463 0.165145i
\(111\) 0 0
\(112\) 0 0
\(113\) −0.500000 0.866025i −0.0470360 0.0814688i 0.841549 0.540181i \(-0.181644\pi\)
−0.888585 + 0.458712i \(0.848311\pi\)
\(114\) 0 0
\(115\) 1.50000 2.59808i 0.139876 0.242272i
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −6.50000 11.2583i −0.588482 1.01928i
\(123\) 0 0
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.00000 1.73205i −0.0877058 0.151911i
\(131\) −7.50000 12.9904i −0.655278 1.13497i −0.981824 0.189794i \(-0.939218\pi\)
0.326546 0.945181i \(-0.394115\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 + 1.73205i −0.0854358 + 0.147979i −0.905577 0.424182i \(-0.860562\pi\)
0.820141 + 0.572161i \(0.193895\pi\)
\(138\) 0 0
\(139\) 4.50000 + 7.79423i 0.381685 + 0.661098i 0.991303 0.131597i \(-0.0420106\pi\)
−0.609618 + 0.792695i \(0.708677\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.50000 4.33013i 0.209795 0.363376i
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 8.00000 0.664364
\(146\) 7.00000 12.1244i 0.579324 1.00342i
\(147\) 0 0
\(148\) 3.00000 + 5.19615i 0.246598 + 0.427121i
\(149\) 5.00000 + 8.66025i 0.409616 + 0.709476i 0.994847 0.101391i \(-0.0323294\pi\)
−0.585231 + 0.810867i \(0.698996\pi\)
\(150\) 0 0
\(151\) −9.50000 + 16.4545i −0.773099 + 1.33905i 0.162758 + 0.986666i \(0.447961\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) −7.00000 −0.567775
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000 3.46410i 0.160644 0.278243i
\(156\) 0 0
\(157\) 5.50000 + 9.52628i 0.438948 + 0.760280i 0.997609 0.0691164i \(-0.0220180\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) −5.50000 9.52628i −0.437557 0.757870i
\(159\) 0 0
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 0 0
\(162\) 0 0
\(163\) −6.00000 −0.469956 −0.234978 0.972001i \(-0.575502\pi\)
−0.234978 + 0.972001i \(0.575502\pi\)
\(164\) 6.00000 10.3923i 0.468521 0.811503i
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) −1.00000 1.73205i −0.0773823 0.134030i 0.824737 0.565516i \(-0.191323\pi\)
−0.902120 + 0.431486i \(0.857990\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) 11.0000 19.0526i 0.836315 1.44854i −0.0566411 0.998395i \(-0.518039\pi\)
0.892956 0.450145i \(-0.148628\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 1.73205i −0.0753778 0.130558i
\(177\) 0 0
\(178\) 7.00000 12.1244i 0.524672 0.908759i
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.50000 2.59808i −0.110581 0.191533i
\(185\) 3.00000 + 5.19615i 0.220564 + 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −7.00000 −0.507833
\(191\) 1.50000 2.59808i 0.108536 0.187990i −0.806641 0.591041i \(-0.798717\pi\)
0.915177 + 0.403051i \(0.132050\pi\)
\(192\) 0 0
\(193\) −2.50000 4.33013i −0.179954 0.311689i 0.761911 0.647682i \(-0.224262\pi\)
−0.941865 + 0.335993i \(0.890928\pi\)
\(194\) 1.00000 + 1.73205i 0.0717958 + 0.124354i
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) 14.0000 0.992434 0.496217 0.868199i \(-0.334722\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) −2.00000 + 3.46410i −0.141421 + 0.244949i
\(201\) 0 0
\(202\) −5.50000 9.52628i −0.386979 0.670267i
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 10.3923i 0.419058 0.725830i
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) −7.00000 + 12.1244i −0.484200 + 0.838659i
\(210\) 0 0
\(211\) 11.0000 + 19.0526i 0.757271 + 1.31163i 0.944237 + 0.329266i \(0.106801\pi\)
−0.186966 + 0.982366i \(0.559865\pi\)
\(212\) 2.00000 + 3.46410i 0.137361 + 0.237915i
\(213\) 0 0
\(214\) −4.00000 + 6.92820i −0.273434 + 0.473602i
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 0 0
\(218\) 2.00000 3.46410i 0.135457 0.234619i
\(219\) 0 0
\(220\) −1.00000 1.73205i −0.0674200 0.116775i
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 + 1.73205i −0.0669650 + 0.115987i −0.897564 0.440884i \(-0.854665\pi\)
0.830599 + 0.556871i \(0.187998\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) −8.50000 + 14.7224i −0.564165 + 0.977162i 0.432962 + 0.901412i \(0.357468\pi\)
−0.997127 + 0.0757500i \(0.975865\pi\)
\(228\) 0 0
\(229\) −6.50000 11.2583i −0.429532 0.743971i 0.567300 0.823511i \(-0.307988\pi\)
−0.996832 + 0.0795401i \(0.974655\pi\)
\(230\) −1.50000 2.59808i −0.0989071 0.171312i
\(231\) 0 0
\(232\) 4.00000 6.92820i 0.262613 0.454859i
\(233\) −1.00000 −0.0655122 −0.0327561 0.999463i \(-0.510428\pi\)
−0.0327561 + 0.999463i \(0.510428\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) −2.00000 + 3.46410i −0.130189 + 0.225494i
\(237\) 0 0
\(238\) 0 0
\(239\) −7.50000 12.9904i −0.485135 0.840278i 0.514719 0.857359i \(-0.327896\pi\)
−0.999854 + 0.0170808i \(0.994563\pi\)
\(240\) 0 0
\(241\) 5.00000 8.66025i 0.322078 0.557856i −0.658838 0.752285i \(-0.728952\pi\)
0.980917 + 0.194429i \(0.0622852\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −13.0000 −0.832240
\(245\) 0 0
\(246\) 0 0
\(247\) 7.00000 + 12.1244i 0.445399 + 0.771454i
\(248\) −2.00000 3.46410i −0.127000 0.219971i
\(249\) 0 0
\(250\) −4.50000 + 7.79423i −0.284605 + 0.492950i
\(251\) 7.00000 0.441836 0.220918 0.975292i \(-0.429095\pi\)
0.220918 + 0.975292i \(0.429095\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) −9.50000 + 16.4545i −0.596083 + 1.03245i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −4.00000 6.92820i −0.249513 0.432169i 0.713878 0.700270i \(-0.246937\pi\)
−0.963391 + 0.268101i \(0.913604\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −2.00000 −0.124035
\(261\) 0 0
\(262\) −15.0000 −0.926703
\(263\) 9.50000 16.4545i 0.585795 1.01463i −0.408981 0.912543i \(-0.634116\pi\)
0.994776 0.102084i \(-0.0325510\pi\)
\(264\) 0 0
\(265\) 2.00000 + 3.46410i 0.122859 + 0.212798i
\(266\) 0 0
\(267\) 0 0
\(268\) 1.00000 1.73205i 0.0610847 0.105802i
\(269\) 7.00000 0.426798 0.213399 0.976965i \(-0.431547\pi\)
0.213399 + 0.976965i \(0.431547\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 1.00000 + 1.73205i 0.0604122 + 0.104637i
\(275\) 4.00000 + 6.92820i 0.241209 + 0.417786i
\(276\) 0 0
\(277\) 1.00000 1.73205i 0.0600842 0.104069i −0.834419 0.551131i \(-0.814196\pi\)
0.894503 + 0.447062i \(0.147530\pi\)
\(278\) 9.00000 0.539784
\(279\) 0 0
\(280\) 0 0
\(281\) −7.50000 + 12.9904i −0.447412 + 0.774941i −0.998217 0.0596933i \(-0.980988\pi\)
0.550804 + 0.834634i \(0.314321\pi\)
\(282\) 0 0
\(283\) 12.5000 + 21.6506i 0.743048 + 1.28700i 0.951101 + 0.308879i \(0.0999539\pi\)
−0.208053 + 0.978117i \(0.566713\pi\)
\(284\) −2.50000 4.33013i −0.148348 0.256946i
\(285\) 0 0
\(286\) −2.00000 + 3.46410i −0.118262 + 0.204837i
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 4.00000 6.92820i 0.234888 0.406838i
\(291\) 0 0
\(292\) −7.00000 12.1244i −0.409644 0.709524i
\(293\) −4.50000 7.79423i −0.262893 0.455344i 0.704117 0.710084i \(-0.251343\pi\)
−0.967009 + 0.254741i \(0.918010\pi\)
\(294\) 0 0
\(295\) −2.00000 + 3.46410i −0.116445 + 0.201688i
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 10.0000 0.579284
\(299\) −3.00000 + 5.19615i −0.173494 + 0.300501i
\(300\) 0 0
\(301\) 0 0
\(302\) 9.50000 + 16.4545i 0.546664 + 0.946849i
\(303\) 0 0
\(304\) −3.50000 + 6.06218i −0.200739 + 0.347690i
\(305\) −13.0000 −0.744378
\(306\) 0 0
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.00000 3.46410i −0.113592 0.196748i
\(311\) 5.00000 + 8.66025i 0.283524 + 0.491078i 0.972250 0.233944i \(-0.0751631\pi\)
−0.688726 + 0.725022i \(0.741830\pi\)
\(312\) 0 0
\(313\) 3.00000 5.19615i 0.169570 0.293704i −0.768699 0.639611i \(-0.779095\pi\)
0.938269 + 0.345907i \(0.112429\pi\)
\(314\) 11.0000 0.620766
\(315\) 0 0
\(316\) −11.0000 −0.618798
\(317\) 12.0000 20.7846i 0.673987 1.16738i −0.302777 0.953062i \(-0.597914\pi\)
0.976764 0.214318i \(-0.0687530\pi\)
\(318\) 0 0
\(319\) −8.00000 13.8564i −0.447914 0.775810i
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) −3.00000 + 5.19615i −0.166155 + 0.287788i
\(327\) 0 0
\(328\) −6.00000 10.3923i −0.331295 0.573819i
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) −2.00000 −0.109435
\(335\) 1.00000 1.73205i 0.0546358 0.0946320i
\(336\) 0 0
\(337\) 11.0000 + 19.0526i 0.599208 + 1.03786i 0.992938 + 0.118633i \(0.0378512\pi\)
−0.393730 + 0.919226i \(0.628816\pi\)
\(338\) −4.50000 7.79423i −0.244768 0.423950i
\(339\) 0 0
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) 0 0
\(344\) −4.00000 + 6.92820i −0.215666 + 0.373544i
\(345\) 0 0
\(346\) −11.0000 19.0526i −0.591364 1.02427i
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) −15.0000 + 25.9808i −0.802932 + 1.39072i 0.114747 + 0.993395i \(0.463394\pi\)
−0.917679 + 0.397324i \(0.869939\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 −0.106600
\(353\) −12.0000 + 20.7846i −0.638696 + 1.10625i 0.347024 + 0.937856i \(0.387192\pi\)
−0.985719 + 0.168397i \(0.946141\pi\)
\(354\) 0 0
\(355\) −2.50000 4.33013i −0.132686 0.229819i
\(356\) −7.00000 12.1244i −0.370999 0.642590i
\(357\) 0 0
\(358\) 12.0000 20.7846i 0.634220 1.09850i
\(359\) −29.0000 −1.53056 −0.765281 0.643697i \(-0.777400\pi\)
−0.765281 + 0.643697i \(0.777400\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) −3.50000 + 6.06218i −0.183956 + 0.318621i
\(363\) 0 0
\(364\) 0 0
\(365\) −7.00000 12.1244i −0.366397 0.634618i
\(366\) 0 0
\(367\) −16.0000 + 27.7128i −0.835193 + 1.44660i 0.0586798 + 0.998277i \(0.481311\pi\)
−0.893873 + 0.448320i \(0.852022\pi\)
\(368\) −3.00000 −0.156386
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) 0 0
\(372\) 0 0
\(373\) 16.0000 + 27.7128i 0.828449 + 1.43492i 0.899255 + 0.437425i \(0.144109\pi\)
−0.0708063 + 0.997490i \(0.522557\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −4.00000 + 6.92820i −0.206284 + 0.357295i
\(377\) −16.0000 −0.824042
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) −3.50000 + 6.06218i −0.179546 + 0.310983i
\(381\) 0 0
\(382\) −1.50000 2.59808i −0.0767467 0.132929i
\(383\) 3.00000 + 5.19615i 0.153293 + 0.265511i 0.932436 0.361335i \(-0.117679\pi\)
−0.779143 + 0.626846i \(0.784346\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.00000 −0.254493
\(387\) 0 0
\(388\) 2.00000 0.101535
\(389\) −15.0000 + 25.9808i −0.760530 + 1.31728i 0.182047 + 0.983290i \(0.441728\pi\)
−0.942578 + 0.333987i \(0.891606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 6.00000 10.3923i 0.302276 0.523557i
\(395\) −11.0000 −0.553470
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 7.00000 12.1244i 0.350878 0.607739i
\(399\) 0 0
\(400\) 2.00000 + 3.46410i 0.100000 + 0.173205i
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) −4.00000 + 6.92820i −0.199254 + 0.345118i
\(404\) −11.0000 −0.547270
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 10.3923i 0.297409 0.515127i
\(408\) 0 0
\(409\) −12.0000 20.7846i −0.593362 1.02773i −0.993776 0.111398i \(-0.964467\pi\)
0.400414 0.916334i \(-0.368866\pi\)
\(410\) −6.00000 10.3923i −0.296319 0.513239i
\(411\) 0 0
\(412\) 4.00000 6.92820i 0.197066 0.341328i
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) −1.00000 + 1.73205i −0.0490290 + 0.0849208i
\(417\) 0 0
\(418\) 7.00000 + 12.1244i 0.342381 + 0.593022i
\(419\) 2.50000 + 4.33013i 0.122133 + 0.211541i 0.920609 0.390487i \(-0.127693\pi\)
−0.798476 + 0.602027i \(0.794360\pi\)
\(420\) 0 0
\(421\) 18.0000 31.1769i 0.877266 1.51947i 0.0229375 0.999737i \(-0.492698\pi\)
0.854329 0.519733i \(-0.173969\pi\)
\(422\) 22.0000 1.07094
\(423\) 0 0
\(424\) 4.00000 0.194257
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 4.00000 + 6.92820i 0.193347 + 0.334887i
\(429\) 0 0
\(430\) −4.00000 + 6.92820i −0.192897 + 0.334108i
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 0 0
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.00000 3.46410i −0.0957826 0.165900i
\(437\) 10.5000 + 18.1865i 0.502283 + 0.869980i
\(438\) 0 0
\(439\) −18.0000 + 31.1769i −0.859093 + 1.48799i 0.0137020 + 0.999906i \(0.495638\pi\)
−0.872795 + 0.488087i \(0.837695\pi\)
\(440\) −2.00000 −0.0953463
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 20.7846i 0.570137 0.987507i −0.426414 0.904528i \(-0.640223\pi\)
0.996551 0.0829786i \(-0.0264433\pi\)
\(444\) 0 0
\(445\) −7.00000 12.1244i −0.331832 0.574750i
\(446\) 1.00000 + 1.73205i 0.0473514 + 0.0820150i
\(447\) 0 0
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) −0.500000 + 0.866025i −0.0235180 + 0.0407344i
\(453\) 0 0
\(454\) 8.50000 + 14.7224i 0.398925 + 0.690958i
\(455\) 0 0
\(456\) 0 0
\(457\) −8.50000 + 14.7224i −0.397613 + 0.688686i −0.993431 0.114433i \(-0.963495\pi\)
0.595818 + 0.803120i \(0.296828\pi\)
\(458\) −13.0000 −0.607450
\(459\) 0 0
\(460\) −3.00000 −0.139876
\(461\) 4.50000 7.79423i 0.209586 0.363013i −0.741998 0.670402i \(-0.766122\pi\)
0.951584 + 0.307388i \(0.0994551\pi\)
\(462\) 0 0
\(463\) 0.500000 + 0.866025i 0.0232370 + 0.0402476i 0.877410 0.479741i \(-0.159269\pi\)
−0.854173 + 0.519989i \(0.825936\pi\)
\(464\) −4.00000 6.92820i −0.185695 0.321634i
\(465\) 0 0
\(466\) −0.500000 + 0.866025i −0.0231621 + 0.0401179i
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −4.00000 + 6.92820i −0.184506 + 0.319574i
\(471\) 0 0
\(472\) 2.00000 + 3.46410i 0.0920575 + 0.159448i
\(473\) 8.00000 + 13.8564i 0.367840 + 0.637118i
\(474\) 0 0
\(475\) 14.0000 24.2487i 0.642364 1.11261i
\(476\) 0 0
\(477\) 0 0
\(478\) −15.0000 −0.686084
\(479\) −12.0000 + 20.7846i −0.548294 + 0.949673i 0.450098 + 0.892979i \(0.351389\pi\)
−0.998392 + 0.0566937i \(0.981944\pi\)
\(480\) 0 0
\(481\) −6.00000 10.3923i −0.273576 0.473848i
\(482\) −5.00000 8.66025i −0.227744 0.394464i
\(483\) 0 0
\(484\) 3.50000 6.06218i 0.159091 0.275554i
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) 25.0000 1.13286 0.566429 0.824110i \(-0.308325\pi\)
0.566429 + 0.824110i \(0.308325\pi\)
\(488\) −6.50000 + 11.2583i −0.294241 + 0.509641i
\(489\) 0 0
\(490\) 0 0
\(491\) 3.00000 + 5.19615i 0.135388 + 0.234499i 0.925746 0.378147i \(-0.123439\pi\)
−0.790358 + 0.612646i \(0.790105\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 14.0000 0.629890
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) −12.0000 20.7846i −0.537194 0.930447i −0.999054 0.0434940i \(-0.986151\pi\)
0.461860 0.886953i \(-0.347182\pi\)
\(500\) 4.50000 + 7.79423i 0.201246 + 0.348569i
\(501\) 0 0
\(502\) 3.50000 6.06218i 0.156213 0.270568i
\(503\) 14.0000 0.624229 0.312115 0.950044i \(-0.398963\pi\)
0.312115 + 0.950044i \(0.398963\pi\)
\(504\) 0 0
\(505\) −11.0000 −0.489494
\(506\) −3.00000 + 5.19615i −0.133366 + 0.230997i
\(507\) 0 0
\(508\) 9.50000 + 16.4545i 0.421494 + 0.730050i
\(509\) 17.0000 + 29.4449i 0.753512 + 1.30512i 0.946111 + 0.323843i \(0.104975\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −8.00000 −0.352865
\(515\) 4.00000 6.92820i 0.176261 0.305293i
\(516\) 0 0
\(517\) 8.00000 + 13.8564i 0.351840 + 0.609404i
\(518\) 0 0
\(519\) 0 0
\(520\) −1.00000 + 1.73205i −0.0438529 + 0.0759555i
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) −35.0000 −1.53044 −0.765222 0.643767i \(-0.777371\pi\)
−0.765222 + 0.643767i \(0.777371\pi\)
\(524\) −7.50000 + 12.9904i −0.327639 + 0.567487i
\(525\) 0 0
\(526\) −9.50000 16.4545i −0.414220 0.717450i
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 4.00000 0.173749
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 + 20.7846i −0.519778 + 0.900281i
\(534\) 0 0
\(535\) 4.00000 + 6.92820i 0.172935 + 0.299532i
\(536\) −1.00000 1.73205i −0.0431934 0.0748132i
\(537\) 0 0
\(538\) 3.50000 6.06218i 0.150896 0.261359i
\(539\) 0 0
\(540\) 0 0
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) −7.00000 + 12.1244i −0.300676 + 0.520786i
\(543\) 0 0
\(544\) 0 0
\(545\) −2.00000 3.46410i −0.0856706 0.148386i
\(546\) 0 0
\(547\) 4.00000 6.92820i 0.171028 0.296229i −0.767752 0.640747i \(-0.778625\pi\)
0.938779 + 0.344519i \(0.111958\pi\)
\(548\) 2.00000 0.0854358
\(549\) 0 0
\(550\) 8.00000 0.341121
\(551\) −28.0000 + 48.4974i −1.19284 + 2.06606i
\(552\) 0 0
\(553\) 0 0
\(554\) −1.00000 1.73205i −0.0424859 0.0735878i
\(555\) 0 0
\(556\) 4.50000 7.79423i 0.190843 0.330549i
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 7.50000 + 12.9904i 0.316368 + 0.547966i
\(563\) −5.50000 9.52628i −0.231797 0.401485i 0.726540 0.687124i \(-0.241127\pi\)
−0.958337 + 0.285640i \(0.907794\pi\)
\(564\) 0 0
\(565\) −0.500000 + 0.866025i −0.0210352 + 0.0364340i
\(566\) 25.0000 1.05083
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) −9.00000 + 15.5885i −0.377300 + 0.653502i −0.990668 0.136295i \(-0.956481\pi\)
0.613369 + 0.789797i \(0.289814\pi\)
\(570\) 0 0
\(571\) −6.00000 10.3923i −0.251092 0.434904i 0.712735 0.701434i \(-0.247456\pi\)
−0.963827 + 0.266529i \(0.914123\pi\)
\(572\) 2.00000 + 3.46410i 0.0836242 + 0.144841i
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) −28.0000 −1.16566 −0.582828 0.812596i \(-0.698054\pi\)
−0.582828 + 0.812596i \(0.698054\pi\)
\(578\) −8.50000 + 14.7224i −0.353553 + 0.612372i
\(579\) 0 0
\(580\) −4.00000 6.92820i −0.166091 0.287678i
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 6.92820i 0.165663 0.286937i
\(584\) −14.0000 −0.579324
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) 11.5000 19.9186i 0.474656 0.822128i −0.524923 0.851150i \(-0.675906\pi\)
0.999579 + 0.0290218i \(0.00923921\pi\)
\(588\) 0 0
\(589\) 14.0000 + 24.2487i 0.576860 + 0.999151i
\(590\) 2.00000 + 3.46410i 0.0823387 + 0.142615i
\(591\) 0 0
\(592\) 3.00000 5.19615i 0.123299 0.213561i
\(593\) 42.0000 1.72473 0.862367 0.506284i \(-0.168981\pi\)
0.862367 + 0.506284i \(0.168981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.00000 8.66025i 0.204808 0.354738i
\(597\) 0 0
\(598\) 3.00000 + 5.19615i 0.122679 + 0.212486i
\(599\) 6.00000 + 10.3923i 0.245153 + 0.424618i 0.962175 0.272433i \(-0.0878284\pi\)
−0.717021 + 0.697051i \(0.754495\pi\)
\(600\) 0 0
\(601\) 13.0000 22.5167i 0.530281 0.918474i −0.469095 0.883148i \(-0.655420\pi\)
0.999376 0.0353259i \(-0.0112469\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 19.0000 0.773099
\(605\) 3.50000 6.06218i 0.142295 0.246463i
\(606\) 0 0
\(607\) −3.00000 5.19615i −0.121766 0.210905i 0.798698 0.601732i \(-0.205522\pi\)
−0.920464 + 0.390827i \(0.872189\pi\)
\(608\) 3.50000 + 6.06218i 0.141944 + 0.245854i
\(609\) 0 0
\(610\) −6.50000 + 11.2583i −0.263177 + 0.455836i
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) −3.50000 + 6.06218i −0.141249 + 0.244650i
\(615\) 0 0
\(616\) 0 0
\(617\) −11.0000 19.0526i −0.442843 0.767027i 0.555056 0.831813i \(-0.312697\pi\)
−0.997899 + 0.0647859i \(0.979364\pi\)
\(618\) 0 0
\(619\) −5.50000 + 9.52628i −0.221064 + 0.382893i −0.955131 0.296183i \(-0.904286\pi\)
0.734068 + 0.679076i \(0.237620\pi\)
\(620\) −4.00000 −0.160644
\(621\) 0 0
\(622\) 10.0000 0.400963
\(623\) 0 0
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) −3.00000 5.19615i −0.119904 0.207680i
\(627\) 0 0
\(628\) 5.50000 9.52628i 0.219474 0.380140i
\(629\) 0 0
\(630\) 0 0
\(631\) 9.00000 0.358284 0.179142 0.983823i \(-0.442668\pi\)
0.179142 + 0.983823i \(0.442668\pi\)
\(632\) −5.50000 + 9.52628i −0.218778 + 0.378935i
\(633\) 0 0
\(634\) −12.0000 20.7846i −0.476581 0.825462i
\(635\) 9.50000 + 16.4545i 0.376996 + 0.652976i
\(636\) 0 0
\(637\) 0 0
\(638\) −16.0000 −0.633446
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 23.5000 40.7032i 0.928194 1.60768i 0.141852 0.989888i \(-0.454694\pi\)
0.786342 0.617792i \(-0.211973\pi\)
\(642\) 0 0
\(643\) −6.00000 10.3923i −0.236617 0.409832i 0.723124 0.690718i \(-0.242705\pi\)
−0.959741 + 0.280885i \(0.909372\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −42.0000 −1.65119 −0.825595 0.564263i \(-0.809160\pi\)
−0.825595 + 0.564263i \(0.809160\pi\)
\(648\) 0 0
\(649\) 8.00000 0.314027
\(650\) 4.00000 6.92820i 0.156893 0.271746i
\(651\) 0 0
\(652\) 3.00000 + 5.19615i 0.117489 + 0.203497i
\(653\) −16.0000 27.7128i −0.626128 1.08449i −0.988322 0.152383i \(-0.951305\pi\)
0.362193 0.932103i \(-0.382028\pi\)
\(654\) 0 0
\(655\) −7.50000 + 12.9904i −0.293049 + 0.507576i
\(656\) −12.0000 −0.468521
\(657\) 0 0
\(658\) 0 0
\(659\) 10.0000 17.3205i 0.389545 0.674711i −0.602844 0.797859i \(-0.705966\pi\)
0.992388 + 0.123148i \(0.0392990\pi\)
\(660\) 0 0
\(661\) −15.5000 26.8468i −0.602880 1.04422i −0.992383 0.123194i \(-0.960686\pi\)
0.389503 0.921025i \(-0.372647\pi\)
\(662\) −2.00000 3.46410i −0.0777322 0.134636i
\(663\) 0 0
\(664\) 6.00000 10.3923i 0.232845 0.403300i
\(665\) 0 0
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) −1.00000 + 1.73205i −0.0386912 + 0.0670151i
\(669\) 0 0
\(670\) −1.00000 1.73205i −0.0386334 0.0669150i
\(671\) 13.0000 + 22.5167i 0.501859 + 0.869246i
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.0192736 0.0333828i −0.856228 0.516599i \(-0.827198\pi\)
0.875501 + 0.483216i \(0.160531\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −3.00000 + 5.19615i −0.115299 + 0.199704i −0.917899 0.396813i \(-0.870116\pi\)
0.802600 + 0.596518i \(0.203449\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) −4.00000 + 6.92820i −0.153168 + 0.265295i
\(683\) 10.0000 0.382639 0.191320 0.981528i \(-0.438723\pi\)
0.191320 + 0.981528i \(0.438723\pi\)
\(684\) 0 0
\(685\) 2.00000 0.0764161
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000 + 6.92820i 0.152499 + 0.264135i
\(689\) −4.00000 6.92820i −0.152388 0.263944i
\(690\) 0 0
\(691\) −14.5000 + 25.1147i −0.551606 + 0.955410i 0.446553 + 0.894757i \(0.352651\pi\)
−0.998159 + 0.0606524i \(0.980682\pi\)
\(692\) −22.0000 −0.836315
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 4.50000 7.79423i 0.170695 0.295652i
\(696\) 0 0
\(697\) 0 0
\(698\) 15.0000 + 25.9808i 0.567758 + 0.983386i
\(699\) 0 0
\(700\) 0 0
\(701\) −2.00000 −0.0755390 −0.0377695 0.999286i \(-0.512025\pi\)
−0.0377695 + 0.999286i \(0.512025\pi\)
\(702\) 0 0
\(703\) −42.0000 −1.58406
\(704\) −1.00000 + 1.73205i −0.0376889 + 0.0652791i
\(705\) 0 0
\(706\) 12.0000 + 20.7846i 0.451626 + 0.782239i
\(707\) 0 0
\(708\) 0 0
\(709\) 16.0000 27.7128i 0.600893 1.04078i −0.391794 0.920053i \(-0.628145\pi\)
0.992686 0.120723i \(-0.0385214\pi\)
\(710\) −5.00000 −0.187647
\(711\) 0 0
\(712\) −14.0000 −0.524672
\(713\) −6.00000 + 10.3923i −0.224702 + 0.389195i
\(714\) 0 0
\(715\) 2.00000 + 3.46410i 0.0747958 + 0.129550i
\(716\) −12.0000 20.7846i −0.448461 0.776757i
\(717\) 0 0
\(718\) −14.5000 + 25.1147i −0.541135 + 0.937274i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 15.0000 25.9808i 0.558242 0.966904i
\(723\) 0 0
\(724\) 3.50000 + 6.06218i 0.130076 + 0.225299i
\(725\) 16.0000 + 27.7128i 0.594225 + 1.02923i
\(726\) 0 0
\(727\) 13.0000 22.5167i 0.482143 0.835097i −0.517647 0.855595i \(-0.673192\pi\)
0.999790 + 0.0204978i \(0.00652512\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −14.0000 −0.518163
\(731\) 0 0
\(732\) 0 0
\(733\) 0.500000 + 0.866025i 0.0184679 + 0.0319874i 0.875112 0.483921i \(-0.160788\pi\)
−0.856644 + 0.515908i \(0.827454\pi\)
\(734\) 16.0000 + 27.7128i 0.590571 + 1.02290i
\(735\) 0 0
\(736\) −1.50000 + 2.59808i −0.0552907 + 0.0957664i
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) −38.0000 −1.39785 −0.698926 0.715194i \(-0.746338\pi\)
−0.698926 + 0.715194i \(0.746338\pi\)
\(740\) 3.00000 5.19615i 0.110282 0.191014i
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 + 41.5692i 0.880475 + 1.52503i 0.850814 + 0.525467i \(0.176109\pi\)
0.0296605 + 0.999560i \(0.490557\pi\)
\(744\) 0 0
\(745\) 5.00000 8.66025i 0.183186 0.317287i
\(746\) 32.0000 1.17160
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 19.5000 + 33.7750i 0.711565 + 1.23247i 0.964269 + 0.264923i \(0.0853467\pi\)
−0.252704 + 0.967544i \(0.581320\pi\)
\(752\) 4.00000 + 6.92820i 0.145865 + 0.252646i
\(753\) 0 0
\(754\) −8.00000 + 13.8564i −0.291343 + 0.504621i
\(755\) 19.0000 0.691481
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) −6.00000 + 10.3923i −0.217930 + 0.377466i
\(759\) 0 0
\(760\) 3.50000 + 6.06218i 0.126958 + 0.219898i
\(761\) 10.0000 + 17.3205i 0.362500 + 0.627868i 0.988372 0.152058i \(-0.0485900\pi\)
−0.625872 + 0.779926i \(0.715257\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −3.00000 −0.108536
\(765\) 0 0
\(766\) 6.00000 0.216789
\(767\) 4.00000 6.92820i 0.144432 0.250163i
\(768\) 0 0
\(769\) 1.00000 + 1.73205i 0.0360609 + 0.0624593i 0.883493 0.468445i \(-0.155186\pi\)
−0.847432 + 0.530904i \(0.821852\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.50000 + 4.33013i −0.0899770 + 0.155845i
\(773\) 21.0000 0.755318 0.377659 0.925945i \(-0.376729\pi\)
0.377659 + 0.925945i \(0.376729\pi\)
\(774\) 0 0
\(775\) 16.0000 0.574737
\(776\) 1.00000 1.73205i 0.0358979 0.0621770i
\(777\) 0 0
\(778\) 15.0000 + 25.9808i 0.537776 + 0.931455i
\(779\) 42.0000 + 72.7461i 1.50481 + 2.60640i
\(780\) 0 0
\(781\) −5.00000 + 8.66025i −0.178914 + 0.309888i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.50000 9.52628i 0.196303 0.340007i
\(786\) 0 0
\(787\) 2.00000 + 3.46410i 0.0712923 + 0.123482i 0.899468 0.436987i \(-0.143954\pi\)
−0.828176 + 0.560469i \(0.810621\pi\)
\(788\) −6.00000 10.3923i −0.213741 0.370211i
\(789\) 0 0
\(790\) −5.50000 + 9.52628i −0.195681 + 0.338930i
\(791\) 0 0
\(792\) 0 0
\(793\) 26.0000 0.923287
\(794\) −7.00000 + 12.1244i −0.248421 + 0.430277i
\(795\) 0 0
\(796\) −7.00000 12.1244i −0.248108 0.429736i
\(797\) −25.5000 44.1673i −0.903256 1.56449i −0.823241 0.567692i \(-0.807836\pi\)
−0.0800155 0.996794i \(-0.525497\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) 3.00000 0.105934
\(803\) −14.0000 + 24.2487i −0.494049 + 0.855718i
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 + 6.92820i 0.140894 + 0.244036i
\(807\) 0 0
\(808\) −5.50000 + 9.52628i −0.193489 + 0.335133i
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −6.00000 10.3923i −0.210300 0.364250i
\(815\) 3.00000 + 5.19615i 0.105085 + 0.182013i
\(816\) 0 0
\(817\) 28.0000 48.4974i 0.979596 1.69671i
\(818\) −24.0000 −0.839140
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) −16.0000 + 27.7128i −0.558404 + 0.967184i 0.439226 + 0.898377i \(0.355253\pi\)
−0.997630 + 0.0688073i \(0.978081\pi\)
\(822\) 0 0
\(823\) 22.0000 + 38.1051i 0.766872 + 1.32826i 0.939251 + 0.343230i \(0.111521\pi\)
−0.172379 + 0.985031i \(0.555146\pi\)
\(824\) −4.00000 6.92820i −0.139347 0.241355i
\(825\) 0 0
\(826\) 0 0
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 6.00000 10.3923i 0.208263 0.360722i
\(831\) 0 0
\(832\) 1.00000 + 1.73205i 0.0346688 + 0.0600481i
\(833\) 0 0
\(834\) 0 0
\(835\) −1.00000 + 1.73205i −0.0346064 + 0.0599401i
\(836\) 14.0000 0.484200
\(837\) 0 0
\(838\) 5.00000 0.172722
\(839\) 15.0000 25.9808i 0.517858 0.896956i −0.481927 0.876211i \(-0.660063\pi\)
0.999785 0.0207443i \(-0.00660359\pi\)
\(840\) 0 0
\(841\) −17.5000 30.3109i −0.603448 1.04520i
\(842\) −18.0000 31.1769i −0.620321 1.07443i
\(843\) 0 0
\(844\) 11.0000 19.0526i 0.378636 0.655816i
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) 2.00000 3.46410i 0.0686803 0.118958i
\(849\) 0 0
\(850\) 0 0
\(851\) −9.00000 15.5885i −0.308516 0.534365i
\(852\) 0 0
\(853\) −18.5000 + 32.0429i −0.633428 + 1.09713i 0.353418 + 0.935466i \(0.385019\pi\)
−0.986846 + 0.161664i \(0.948314\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) 9.00000 15.5885i 0.307434 0.532492i −0.670366 0.742030i \(-0.733863\pi\)
0.977800 + 0.209539i \(0.0671963\pi\)
\(858\) 0 0
\(859\) 18.0000 + 31.1769i 0.614152 + 1.06374i 0.990533 + 0.137277i \(0.0438352\pi\)
−0.376381 + 0.926465i \(0.622831\pi\)
\(860\) 4.00000 + 6.92820i 0.136399 + 0.236250i
\(861\) 0 0
\(862\) −16.0000 + 27.7128i −0.544962 + 0.943902i
\(863\) −57.0000 −1.94030 −0.970151 0.242500i \(-0.922032\pi\)
−0.970151 + 0.242500i \(0.922032\pi\)
\(864\) 0 0
\(865\) −22.0000 −0.748022
\(866\) 14.0000 24.2487i 0.475739 0.824005i
\(867\) 0 0
\(868\) 0 0
\(869\) 11.0000 + 19.0526i 0.373149 + 0.646314i
\(870\) 0 0
\(871\) −2.00000 + 3.46410i −0.0677674 + 0.117377i
\(872\) −4.00000 −0.135457
\(873\) 0 0
\(874\) 21.0000 0.710336
\(875\) 0 0
\(876\) 0 0
\(877\) −12.0000 20.7846i −0.405211 0.701846i 0.589135 0.808035i \(-0.299469\pi\)
−0.994346 + 0.106188i \(0.966135\pi\)
\(878\) 18.0000 + 31.1769i 0.607471 + 1.05217i
\(879\) 0 0
\(880\) −1.00000 + 1.73205i −0.0337100 + 0.0583874i
\(881\) 28.0000 0.943344 0.471672 0.881774i \(-0.343651\pi\)
0.471672 + 0.881774i \(0.343651\pi\)
\(882\) 0 0
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −12.0000 20.7846i −0.403148 0.698273i
\(887\) −18.0000 31.1769i −0.604381 1.04682i −0.992149 0.125061i \(-0.960087\pi\)
0.387768 0.921757i \(-0.373246\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −14.0000 −0.469281
\(891\) 0 0
\(892\) 2.00000 0.0669650
\(893\) 28.0000 48.4974i 0.936984 1.62290i
\(894\) 0 0
\(895\) −12.0000 20.7846i −0.401116 0.694753i
\(896\) 0 0
\(897\) 0 0
\(898\) −4.50000 + 7.79423i −0.150167 + 0.260097i
\(899\) −32.0000 −1.06726
\(900\) 0 0
\(901\) 0 0
\(902\) −12.0000 + 20.7846i −0.399556 + 0.692052i
\(903\) 0 0
\(904\) 0.500000 + 0.866025i 0.0166298 + 0.0288036i
\(905\) 3.50000 + 6.06218i 0.116344 + 0.201514i
\(906\) 0 0
\(907\) 1.00000 1.73205i 0.0332045 0.0575118i −0.848946 0.528480i \(-0.822762\pi\)
0.882150 + 0.470968i \(0.156095\pi\)
\(908\) 17.0000 0.564165
\(909\) 0 0
\(910\) 0 0
\(911\) −0.500000 + 0.866025i −0.0165657 + 0.0286927i −0.874189 0.485585i \(-0.838607\pi\)
0.857624 + 0.514278i \(0.171940\pi\)
\(912\) 0 0
\(913\) −12.0000 20.7846i −0.397142 0.687870i
\(914\) 8.50000 + 14.7224i 0.281155 + 0.486975i
\(915\) 0 0
\(916\) −6.50000 + 11.2583i −0.214766 + 0.371986i
\(917\) 0 0
\(918\) 0 0
\(919\) 15.0000 0.494804 0.247402 0.968913i \(-0.420423\pi\)
0.247402 + 0.968913i \(0.420423\pi\)
\(920\) −1.50000 + 2.59808i −0.0494535 + 0.0856560i
\(921\) 0 0
\(922\) −4.50000 7.79423i −0.148200 0.256689i
\(923\) 5.00000 + 8.66025i 0.164577 + 0.285056i
\(924\) 0 0
\(925\) −12.0000 + 20.7846i −0.394558 + 0.683394i
\(926\) 1.00000 0.0328620
\(927\) 0 0
\(928\) −8.00000 −0.262613
\(929\) −3.00000 + 5.19615i −0.0984268 + 0.170480i −0.911034 0.412332i \(-0.864714\pi\)
0.812607 + 0.582812i \(0.198048\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.500000 + 0.866025i 0.0163780 + 0.0283676i
\(933\) 0 0
\(934\) −14.0000 + 24.2487i −0.458094 + 0.793442i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4.00000 + 6.92820i 0.130466 + 0.225973i
\(941\) 1.50000 + 2.59808i 0.0488986 + 0.0846949i 0.889439 0.457054i \(-0.151096\pi\)
−0.840540 + 0.541749i \(0.817762\pi\)
\(942\) 0 0
\(943\) −18.0000 + 31.1769i −0.586161 + 1.01526i
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) 5.00000 8.66025i 0.162478 0.281420i −0.773279 0.634066i \(-0.781385\pi\)
0.935757 + 0.352646i \(0.114718\pi\)
\(948\) 0 0
\(949\) 14.0000 + 24.2487i 0.454459 + 0.787146i
\(950\) −14.0000 24.2487i −0.454220 0.786732i
\(951\) 0 0
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) −3.00000 −0.0970777
\(956\) −7.50000 + 12.9904i −0.242567 + 0.420139i
\(957\) 0 0
\(958\) 12.0000 + 20.7846i 0.387702 + 0.671520i
\(959\) 0 0
\(960\) 0 0
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) −12.0000 −0.386896
\(963\) 0 0
\(964\) −10.0000 −0.322078
\(965\) −2.50000 + 4.33013i −0.0804778 + 0.139392i
\(966\) 0 0
\(967\) −6.50000 11.2583i −0.209026 0.362043i 0.742382 0.669977i \(-0.233696\pi\)
−0.951408 + 0.307933i \(0.900363\pi\)
\(968\) −3.50000 6.06218i −0.112494 0.194846i
\(969\) 0 0
\(970\) 1.00000 1.73205i 0.0321081 0.0556128i
\(971\) −35.0000 −1.12320 −0.561602 0.827408i \(-0.689815\pi\)
−0.561602 + 0.827408i \(0.689815\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 12.5000 21.6506i 0.400526 0.693731i
\(975\) 0 0
\(976\) 6.50000 + 11.2583i 0.208060 + 0.360370i
\(977\) −1.00000 1.73205i −0.0319928 0.0554132i 0.849586 0.527451i \(-0.176852\pi\)
−0.881579 + 0.472037i \(0.843519\pi\)
\(978\) 0 0
\(979\) −14.0000 + 24.2487i −0.447442 + 0.774992i
\(980\) 0 0
\(981\) 0 0
\(982\) 6.00000 0.191468
\(983\) 16.0000 27.7128i 0.510321 0.883901i −0.489608 0.871943i \(-0.662860\pi\)
0.999928 0.0119587i \(-0.00380665\pi\)
\(984\) 0 0
\(985\) −6.00000 10.3923i −0.191176 0.331126i
\(986\) 0 0
\(987\) 0 0
\(988\) 7.00000 12.1244i 0.222700 0.385727i
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) 0 0
\(995\) −7.00000 12.1244i −0.221915 0.384368i
\(996\) 0 0
\(997\) 8.50000 14.7224i 0.269198 0.466264i −0.699457 0.714675i \(-0.746575\pi\)
0.968655 + 0.248410i \(0.0799082\pi\)
\(998\) −24.0000 −0.759707
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.f.f.883.1 2
3.2 odd 2 882.2.f.c.295.1 yes 2
7.2 even 3 2646.2.e.a.2125.1 2
7.3 odd 6 2646.2.h.g.667.1 2
7.4 even 3 2646.2.h.j.667.1 2
7.5 odd 6 2646.2.e.d.2125.1 2
7.6 odd 2 2646.2.f.h.883.1 2
9.2 odd 6 7938.2.a.v.1.1 1
9.4 even 3 inner 2646.2.f.f.1765.1 2
9.5 odd 6 882.2.f.c.589.1 yes 2
9.7 even 3 7938.2.a.k.1.1 1
21.2 odd 6 882.2.e.j.655.1 2
21.5 even 6 882.2.e.f.655.1 2
21.11 odd 6 882.2.h.a.79.1 2
21.17 even 6 882.2.h.d.79.1 2
21.20 even 2 882.2.f.b.295.1 2
63.4 even 3 2646.2.e.a.1549.1 2
63.5 even 6 882.2.h.d.67.1 2
63.13 odd 6 2646.2.f.h.1765.1 2
63.20 even 6 7938.2.a.ba.1.1 1
63.23 odd 6 882.2.h.a.67.1 2
63.31 odd 6 2646.2.e.d.1549.1 2
63.32 odd 6 882.2.e.j.373.1 2
63.34 odd 6 7938.2.a.f.1.1 1
63.40 odd 6 2646.2.h.g.361.1 2
63.41 even 6 882.2.f.b.589.1 yes 2
63.58 even 3 2646.2.h.j.361.1 2
63.59 even 6 882.2.e.f.373.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.f.373.1 2 63.59 even 6
882.2.e.f.655.1 2 21.5 even 6
882.2.e.j.373.1 2 63.32 odd 6
882.2.e.j.655.1 2 21.2 odd 6
882.2.f.b.295.1 2 21.20 even 2
882.2.f.b.589.1 yes 2 63.41 even 6
882.2.f.c.295.1 yes 2 3.2 odd 2
882.2.f.c.589.1 yes 2 9.5 odd 6
882.2.h.a.67.1 2 63.23 odd 6
882.2.h.a.79.1 2 21.11 odd 6
882.2.h.d.67.1 2 63.5 even 6
882.2.h.d.79.1 2 21.17 even 6
2646.2.e.a.1549.1 2 63.4 even 3
2646.2.e.a.2125.1 2 7.2 even 3
2646.2.e.d.1549.1 2 63.31 odd 6
2646.2.e.d.2125.1 2 7.5 odd 6
2646.2.f.f.883.1 2 1.1 even 1 trivial
2646.2.f.f.1765.1 2 9.4 even 3 inner
2646.2.f.h.883.1 2 7.6 odd 2
2646.2.f.h.1765.1 2 63.13 odd 6
2646.2.h.g.361.1 2 63.40 odd 6
2646.2.h.g.667.1 2 7.3 odd 6
2646.2.h.j.361.1 2 63.58 even 3
2646.2.h.j.667.1 2 7.4 even 3
7938.2.a.f.1.1 1 63.34 odd 6
7938.2.a.k.1.1 1 9.7 even 3
7938.2.a.v.1.1 1 9.2 odd 6
7938.2.a.ba.1.1 1 63.20 even 6