L(s) = 1 | + 4·9-s − 10·25-s + 16·31-s − 16·37-s − 6·41-s + 8·43-s − 4·49-s + 24·59-s − 4·61-s − 8·73-s + 7·81-s − 24·83-s − 32·103-s + 24·107-s + 24·113-s + 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + ⋯ |
L(s) = 1 | + 4/3·9-s − 2·25-s + 2.87·31-s − 2.63·37-s − 0.937·41-s + 1.21·43-s − 4/7·49-s + 3.12·59-s − 0.512·61-s − 0.936·73-s + 7/9·81-s − 2.63·83-s − 3.15·103-s + 2.32·107-s + 2.25·113-s + 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6885376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6885376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.399649674\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.399649674\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.891469499644162543686393627221, −8.711935362436529781211727129097, −8.225523209629705612102174446168, −8.037667306750848430173670108986, −7.44792138415604499619483341702, −7.16115888324212279685532985558, −6.75673217460874412592094415942, −6.56200657441389535957500927101, −5.94128958397620252483877214123, −5.52506245666531720333649824480, −5.26449181306628346759390542488, −4.51447888170071713116336498674, −4.33683833760827064277083220834, −4.00861174572670159890331347180, −3.36671125854621519361532776409, −3.00453203648851276865586032690, −2.25275594701748714925847099885, −1.83695266189739431821786959799, −1.31413137459246018953521091165, −0.52931597470897957209954358229,
0.52931597470897957209954358229, 1.31413137459246018953521091165, 1.83695266189739431821786959799, 2.25275594701748714925847099885, 3.00453203648851276865586032690, 3.36671125854621519361532776409, 4.00861174572670159890331347180, 4.33683833760827064277083220834, 4.51447888170071713116336498674, 5.26449181306628346759390542488, 5.52506245666531720333649824480, 5.94128958397620252483877214123, 6.56200657441389535957500927101, 6.75673217460874412592094415942, 7.16115888324212279685532985558, 7.44792138415604499619483341702, 8.037667306750848430173670108986, 8.225523209629705612102174446168, 8.711935362436529781211727129097, 8.891469499644162543686393627221