L(s) = 1 | − 4·5-s − 2·9-s + 2·25-s − 16·31-s − 4·37-s − 6·41-s − 8·43-s + 8·45-s + 6·49-s − 8·59-s + 4·61-s + 28·73-s − 5·81-s + 24·83-s − 16·103-s + 8·107-s + 12·113-s + 14·121-s + 28·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 64·155-s + 157-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 2/3·9-s + 2/5·25-s − 2.87·31-s − 0.657·37-s − 0.937·41-s − 1.21·43-s + 1.19·45-s + 6/7·49-s − 1.04·59-s + 0.512·61-s + 3.27·73-s − 5/9·81-s + 2.63·83-s − 1.57·103-s + 0.773·107-s + 1.12·113-s + 1.27·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 5.14·155-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6885376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6885376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.888843940649523537033929649213, −8.135718645356398044431926469390, −8.061288689564869938290171219696, −7.53048881109507139472483898254, −7.19329389521508500902345398463, −7.03430143165493489831648797664, −6.29784127022138595739276887929, −6.11116830385895361147868668936, −5.38689063119039160929432432020, −5.15596710736020945436048426702, −4.82694579010484951729055065039, −4.05288902500552237793673681572, −3.83013743400294434522060536194, −3.34658419763100065290472210068, −3.34203886798213902015147284516, −2.22885376261039609154321513075, −2.03754132794151406483654831090, −1.09674807355815801470750320281, 0, 0,
1.09674807355815801470750320281, 2.03754132794151406483654831090, 2.22885376261039609154321513075, 3.34203886798213902015147284516, 3.34658419763100065290472210068, 3.83013743400294434522060536194, 4.05288902500552237793673681572, 4.82694579010484951729055065039, 5.15596710736020945436048426702, 5.38689063119039160929432432020, 6.11116830385895361147868668936, 6.29784127022138595739276887929, 7.03430143165493489831648797664, 7.19329389521508500902345398463, 7.53048881109507139472483898254, 8.061288689564869938290171219696, 8.135718645356398044431926469390, 8.888843940649523537033929649213