Properties

Label 4-24e4-1.1-c1e2-0-38
Degree $4$
Conductor $331776$
Sign $1$
Analytic cond. $21.1543$
Root an. cond. $2.14461$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 8·13-s + 8·17-s + 8·25-s − 4·29-s − 6·49-s − 12·53-s + 32·65-s + 32·85-s + 8·89-s + 101-s + 103-s + 107-s + 109-s + 113-s − 18·121-s + 20·125-s + 127-s + 131-s + 137-s + 139-s − 16·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 1.78·5-s + 2.21·13-s + 1.94·17-s + 8/5·25-s − 0.742·29-s − 6/7·49-s − 1.64·53-s + 3.96·65-s + 3.47·85-s + 0.847·89-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 1.63·121-s + 1.78·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(331776\)    =    \(2^{12} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(21.1543\)
Root analytic conductor: \(2.14461\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 331776,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.173276169\)
\(L(\frac12)\) \(\approx\) \(3.173276169\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.5.ae_i
7$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \) 2.7.a_g
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.11.a_s
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.13.ai_bq
17$C_2^2$ \( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} \) 2.17.ai_bg
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \) 2.19.a_be
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.23.a_as
29$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.29.e_i
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \) 2.31.a_ak
37$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \) 2.37.a_acg
41$C_2^2$ \( 1 + p^{2} T^{4} \) 2.41.a_a
43$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \) 2.43.a_da
47$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.47.a_dq
53$C_2^2$ \( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} \) 2.53.m_cu
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.59.a_de
61$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \) 2.61.a_aec
67$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \) 2.67.a_aco
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.71.a_da
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \) 2.73.a_abu
79$C_2^2$ \( 1 + 150 T^{2} + p^{2} T^{4} \) 2.79.a_fu
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.83.a_fa
89$C_2^2$ \( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} \) 2.89.ai_bg
97$C_2^2$ \( 1 - 158 T^{2} + p^{2} T^{4} \) 2.97.a_agc
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.1134033273, −12.7663250821, −12.2197506970, −11.7535702866, −11.2122486187, −10.8686268323, −10.4466940745, −10.0679996556, −9.59262131863, −9.30832451479, −8.89135663765, −8.28253505043, −7.94716049506, −7.44219140220, −6.60524777327, −6.33987862173, −5.94443193555, −5.46540687554, −5.21389696946, −4.33920601107, −3.54129031628, −3.29152788264, −2.42426145010, −1.51240634341, −1.26871170597, 1.26871170597, 1.51240634341, 2.42426145010, 3.29152788264, 3.54129031628, 4.33920601107, 5.21389696946, 5.46540687554, 5.94443193555, 6.33987862173, 6.60524777327, 7.44219140220, 7.94716049506, 8.28253505043, 8.89135663765, 9.30832451479, 9.59262131863, 10.0679996556, 10.4466940745, 10.8686268323, 11.2122486187, 11.7535702866, 12.2197506970, 12.7663250821, 13.1134033273

Graph of the $Z$-function along the critical line