Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 4 x + 8 x^{2} + 116 x^{3} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.334584205615$, $\pm0.834584205615$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{6})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $52$ |
| Isomorphism classes: | 56 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $970$ | $708100$ | $602580490$ | $501405610000$ | $420452233965850$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $34$ | $842$ | $24706$ | $708918$ | $20498714$ | $594823322$ | $17249520266$ | $500247903838$ | $14507153319394$ | $420707233300202$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=17 x^6+16 x^5+10 x^4+10 x^2+13 x+17$
- $y^2=2 x^6+26 x^5+14 x^4+19 x^3+6 x^2+11 x$
- $y^2=18 x^6+17 x^5+25 x^4+24 x^3+7 x^2+23 x+9$
- $y^2=5 x^6+22 x^5+28 x^4+19 x^3+13 x^2+9 x+19$
- $y^2=24 x^6+5 x^5+5 x^4+19 x^3+25 x^2+28 x$
- $y^2=24 x^6+9 x^5+24 x^4+6 x^3+4 x^2+13 x+11$
- $y^2=24 x^6+24 x^5+8 x^3+14 x^2+14 x$
- $y^2=15 x^6+11 x^5+4 x^4+24 x^3+5 x^2+26 x+6$
- $y^2=16 x^6+14 x^4+28 x^3+14 x^2+27 x+6$
- $y^2=23 x^6+28 x^5+20 x^4+15 x^3+10 x^2+x+15$
- $y^2=18 x^6+10 x^5+12 x^4+15 x^3+6 x^2+23 x+23$
- $y^2=3 x^6+4 x^5+12 x^4+19 x^3+19 x^2+11 x+16$
- $y^2=18 x^6+14 x^5+20 x^4+4 x^3+27 x^2+17 x+25$
- $y^2=14 x^5+23 x^4+26 x^3+12 x^2+23 x$
- $y^2=17 x^5+13 x^4+2 x^3+12 x^2+26 x+22$
- $y^2=8 x^6+25 x^5+4 x^4+17 x^3+2 x^2+8 x+17$
- $y^2=24 x^6+17 x^5+19 x^4+11 x^3+20 x^2+12 x+12$
- $y^2=x^6+22 x^5+16 x^4+22 x^3+6 x+4$
- $y^2=25 x^6+10 x^5+28 x^4+6 x^3+4 x^2+14 x+11$
- $y^2=16 x^6+26 x^5+25 x^4+27 x^3+17 x^2+12 x+22$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{4}}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{6})\). |
| The base change of $A$ to $\F_{29^{4}}$ is 1.707281.bfm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
- Endomorphism algebra over $\F_{29^{2}}$
The base change of $A$ to $\F_{29^{2}}$ is the simple isogeny class 2.841.a_bfm and its endomorphism algebra is \(\Q(i, \sqrt{6})\).
Base change
This is a primitive isogeny class.