L(s) = 1 | − 4·5-s + 4·13-s + 4·17-s + 6·25-s − 4·29-s + 4·37-s + 12·41-s + 6·49-s − 4·53-s − 12·61-s − 16·65-s − 12·73-s − 16·85-s − 12·89-s + 12·97-s + 12·101-s − 12·109-s + 12·113-s + 6·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 16·145-s + 149-s + 151-s + ⋯ |
L(s) = 1 | − 1.78·5-s + 1.10·13-s + 0.970·17-s + 6/5·25-s − 0.742·29-s + 0.657·37-s + 1.87·41-s + 6/7·49-s − 0.549·53-s − 1.53·61-s − 1.98·65-s − 1.40·73-s − 1.73·85-s − 1.27·89-s + 1.21·97-s + 1.19·101-s − 1.14·109-s + 1.12·113-s + 6/11·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.32·145-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.156254268\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.156254268\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.498496081569373807285549191202, −8.391925588786705405617316621484, −7.70067673686940046033546918439, −7.47390666566264531130184535895, −7.23720596968336809806830163371, −6.26887733392054148669298775211, −6.02530151903108223925256828434, −5.47124076590828075518360744546, −4.69793168379277165720707433216, −4.18713263931496237526004419321, −3.85070648314156028643980276555, −3.29665856805500580653590358871, −2.74050217548656748847252330619, −1.58561781277996662118904169882, −0.64966467207572311441047422696,
0.64966467207572311441047422696, 1.58561781277996662118904169882, 2.74050217548656748847252330619, 3.29665856805500580653590358871, 3.85070648314156028643980276555, 4.18713263931496237526004419321, 4.69793168379277165720707433216, 5.47124076590828075518360744546, 6.02530151903108223925256828434, 6.26887733392054148669298775211, 7.23720596968336809806830163371, 7.47390666566264531130184535895, 7.70067673686940046033546918439, 8.391925588786705405617316621484, 8.498496081569373807285549191202